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The LNCS Journal on Data Semantics 

Computerized information handling has changed its focus from centralized data man-
agement systems to decentralized data exchange facilities. Modern distribution channels, 
such as high-speed Internet networks and wireless communication infrastructure, pro-
vide reliable technical support for data distribution and data access, materializing the 
new, popular idea that data may be available to anybody, anywhere, anytime. However, 
providing huge amounts of data on request often turns into a counterproductive service, 
making the data useless because of poor relevance or inappropriate level of detail. Se-
mantic knowledge is the essential missing piece that allows the delivery of information 
that matches user requirements. Semantic agreement, in particular, is essential to mean-
ingful data exchange. 

Semantic issues have long been open issues in data and knowledge management. 
However, the boom in semantically poor technologies, such as the Web and XML, 
has boosted renewed interest in semantics. Conferences on the Semantic Web, for 
instance, attract crowds of participants, while ontologies on their own have become a 
hot and popular topic in the database and artificial intelligence communities. 

Springer's LNCS Journal on Data Semantics aims at providing a highly visible 
dissemination channel for most remarkable work that in one way or another addresses 
research and development on issues related to the semantics of data. The target do-
main ranges from theories supporting the formal definition of semantic content to 
innovative domain-specific application of semantic knowledge. This publication 
channel should be of the highest interest to researchers and advanced practitioners 
working on the Semantic Web, interoperability, mobile information services, data 
warehousing, knowledge representation and reasoning, conceptual database model-
ing, ontologies, and artificial intelligence. 

Topics of relevance to this journal include: 

• Semantic interoperability, semantic mediators 
• Ontologies 
• Ontology, schema and data integration, reconciliation and alignment 
• Multiple representations, alternative representations 
• Knowledge representation and reasoning 
• Conceptualization and representation 
• Multi-model and multi-paradigm approaches 
• Mappings, transformations, reverse engineering 
• Metadata 
• Conceptual data modeling 
• Integrity description and handling 
• Evolution and change 
• Web semantics and semi-structured data 
• Semantic caching 



 Preface VI 

• Data warehousing and semantic data mining 
• Spatial, temporal, multimedia and multimodal semantics 
• Semantics in data visualization 
• Semantic services for mobile users 
• Supporting tools 
• Applications of semantic-driven approaches 

These topics are to be understood as specifically related to semantic issues. Contri-
butions submitted to the journal and dealing with semantics of data will be considered 
even if they are not within the topics in the list. 

While the physical appearance of the journal issues looks like the books from the 
well-known Springer LNCS series, the mode of operation is that of a journal. Contribu-
tions can be freely submitted by authors and are reviewed by the Editorial Board. Con-
tributions may also be invited, and nevertheless carefully reviewed, as in the case for 
issues that contain extended versions of best papers from major conferences addressing 
data semantics issues. Special issues, focusing on a specific topic, are coordinated by 
guest editors once the proposal for a special issue is accepted by the Editorial Board. 
Finally, it is also possible that a journal issue be devoted to a single text. 

The journal published its first volume in 2003 (LNCS 2800). That initial volume, 
as well as volumes II (LNCS 3360), III (LNCS 3534), V (LNCS 3870), and coming 
volume VIII represent the annual occurrence of a special issue devoted to publication 
of selected extended versions of best conference papers from previous year confer-
ences. Volumes III and VI are annual special issues on a dedicated topic. Volume III, 
coordinated by guest editor Esteban Zimányi, addressed Semantic-based Geographi-
cal Information Systems, while volume VI, coordinated by guest editors Karl Aberer 
and Philippe Cudre-Mauroux, addressed Emergent Semantics. The fourth volume was 
the first "normal" volume, built from spontaneous submissions on any of the topics of 
interest to the Journal. This volume VII is the second of this type. 

The Editorial Board comprises one Editor-in-Chief (with overall responsibility), a 
co-editor-in-chief, and several members. The Editor-in-Chief has a four-year man-
date.  Members of the board have a three-year mandate. Mandates are renewable. 
New members may be elected anytime. 

We are happy to welcome you to our readership and authorship, and hope we will 
share this privileged contact for a long time. 

 
        Stefano Spaccapietra 
                                  Editor-in-Chief 
                                                                              http://lbdwww.epfl.ch/e/Springer/ 



 

JoDS Volume VII – Preface 

This JoDS volume results from a rigorous selection among 35 abstract/paper submis-
sions received in response to a call for contributions issued July 2005. 

After two rounds of reviews, nine papers, spanning a wide variety of topics, were 
eventually accepted for publication. They are listed in the table of contents herein. 

We would like to thank authors of all submitted papers as well as all reviewers 
who contributed to improving the papers through their detailed comments. 

Forthcoming volume VIII will contain extended versions of best papers from 2005 
conferences covering semantics aspects. Its publication is expected towards the end  
of 2006. 

We hope you'll enjoy reading this volume. 
 
 
                          Stefano Spaccapietra 
                                  Editor-in-Chief 
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Discovering the Semantics of Relational Tables
Through Mappings �

Yuan An1, Alex Borgida2, and John Mylopoulos1

1 Department of Computer Science, University of Toronto, Canada
{yuana, jm}@cs.toronto.edu

2 Department of Computer Science, Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. Many problems in Information and Data Management require a se-
mantic account of a database schema. At its best, such an account consists of
formulas expressing the relationship (“mapping”) between the schema and a for-
mal conceptual model or ontology (CM) of the domain. In this paper we describe
the underlying principles, algorithms, and a prototype tool that finds such se-
mantic mappings from relational tables to ontologies, when given as input simple
correspondences from columns of the tables to datatype properties of classes in
an ontology. Although the algorithm presented is necessarily heuristic, we offer
formal results showing that the answers returned by the tool are “correct” for re-
lational schemas designed according to standard Entity-Relationship techniques.
To evaluate its usefulness and effectiveness, we have applied the tool to a number
of public domain schemas and ontologies. Our experience shows that significant
effort is saved when using it to build semantic mappings from relational tables to
ontologies.

Keywords: Semantics, ontologies, mappings, semantic interoperability.

1 Introduction and Motivation

A number of important database problems have been shown to have improved solutions
by using a conceptual model or an ontology (CM) to provide precise semantics for a
database schema. These1 include federated databases, data warehousing [2], and infor-
mation integration through mediated schemas [13,8]. Since much information on the
web is generated from databases (the “deep web”), the recent call for a Semantic Web,
which requires a connection between web content and ontologies, provides additional
motivation for the problem of associating semantics with database-resident data (e.g.,
[10]). In almost all of these cases, semantics of the data is captured by some kind of
semantic mapping between the database schema and the CM. Although sometimes the
mapping is just a simple association from terms to terms, in other cases what is required
is a complex formula, often expressed in logic or a query language [14].

For example, in both the Information Manifold data integration system presented in
[13] and the DWQ data warehousing system [2], formulas of the form T (X) :- Φ(X, Y )

� This is an expanded and refined version of a research paper presented at ODBASE’05 [1].
1 For a survey, see [23].

S. Spaccapietra (Ed.): Journal on Data Semantics VII, LNCS 4244, pp. 1–32, 2006.
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2 Y. An, A. Borgida, and J. Mylopoulos

are used to connect a relational data source to a CM expressed in terms of a Descrip-
tion Logic, where T (X) is a single predicate representing a table in the relational data
source, and Φ(X, Y ) is a conjunctive formula over the predicates representing the con-
cepts and relationships in the CM. In the literature, such a formalism is called local-as-
view (LAV), in contrast to global-as-view (GAV), where atomic ontology concepts and
properties are specified by queries over the database [14].

In all previous work it has been assumed that humans specify the mapping formulas
– a difficult, time-consuming and error-prone task, especially since the specifier must
be familiar with both the semantics of the database schema and the contents of the on-
tology. As the size and complexity of ontologies increase, it becomes desirable to have
some kind of computer tool to assist people in the task. Note that the problem of seman-
tic mapping discovery is superficially similar to that of database schema mapping, how-
ever the goal of the later is finding queries/rules for integrating/translating/exchanging
the underlying data. Mapping schemas to ontologies, on the other hand, is aimed at un-
derstanding the semantics of a schema expressed in terms of a given semantic model.
This requires paying special attentions to various semantic constructs in both schema
and ontology languages.

We have proposed in [1] a tool that assists users in discovering mapping formulas
between relational database schemas and ontologies, and presented the algorithms and
the formal results. In this paper, we provide, in addition to what appears in [1], more de-
tailed examples for explaining the algorithms, and we also present proofs to the formal
results. Moreover, we show how to handle GAV formulas that are often useful for many
practical data integration systems. The heuristics that underlie the discovery process
are based on a careful study of standard design process relating the constructs of the
relational model with those of conceptual modeling languages. In order to improve the
effectiveness of our tool, we assume some user input in addition to the database schema
and the ontology. Specifically, inspired by the Clio project [17], we expect the tool
user to provide simple correspondences between atomic elements used in the database
schema (e.g., column names of tables) and those in the ontology (e.g., attribute/”data
type property” names of concepts). Given the set of correspondences, the tool is ex-
pected to reason about the database schema and the ontology, and to generate a list
of candidate formulas for each table in the relational database. Ideally, one of the for-
mulas is the correct one — capturing user intention underlying given correspondences.
The claim is that, compared to composing logical formulas representing semantic map-
pings, it is much easier for users to (i) draw simple correspondences/arrows from col-
umn names of tables in the database to datatype properties of classes in the ontology2

and then (ii) evaluate proposed formulas returned by the tool. The following example
illustrates the input/output behavior of the tool proposed.

Example 1.1. An ontology contains concepts (classes), attributes of concepts (datatype
properties of classes), relationships between concepts (associations), and cardinality
constraints on occurrences of the participating concepts in a relationship. Graphically,
we use the UML notations to represent the above information. Figure 1 is an enter-
prise ontology containing some basic concepts and relationships. (Recall that cardinality

2 In fact, there exist already tools used in schema matching which help perform such tasks using
linguistic, structural, and statistical information (e.g., [4,21]).
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Fig. 1. Relational table, Ontology, and Correspondences

constraints in UML are written at the opposite end of the association: a Department
has at least 4 Employees working for it, and an Employee works in one Department.)
Suppose we wish to discover the semantics of a relational table Employee(ssn,name,
dept, proj) with key ssn in terms of the enterprise ontology. Suppose that by looking at
column names of the table and the ontology graph, the user draws the simple correspon-
dences shown as dashed arrows in Figure 1. This indicates, for example, that the ssn
column corresponds to the hasSsn property of the Employee concept. Using prefixes
T and O to distinguish tables in the relational schema and concepts in the ontology
(both of which will eventually be thought of as predicates), we represent the correspon-
dences as follows:
T : Employee.ssn�O : Employee.hasSsn

T : Employee.name�O : Employee.hasName

T : Employee.dept�O : Department.hasDeptNumber

T : Employee.proj�O : Worksite.hasNumber

Given the above inputs, the tool is expected to produce a list of plausible mapping
formulas, which would hopefully include the following formula, expressing a possible
semantics for the table:
T :Employee(ssn, name, dept, proj) :-

O:Employee(x1), O:hasSsn(x1,ssn), O:hasName(x1,name), O:Department(x2),
O:works for(x1,x2), O:hasDeptNumber(x2,dept), O:Worksite(x3), O:works on(x1,x3),
O:hasNumber(x3,proj).

Note that, as explained in [14], the above, admittedly confusing notation in the litera-
ture, should really be interpreted as the First Order Logic formula

(∀ssn, name, dept, proj) T :Employee(ssn, name, dept, proj) ⇒
(∃x1, x2, x3) O:Employee(x1) ∧...

because the ontology explains what is in the table (i.e., every tuple corresponds to an
employee), rather than guaranteeing that the table satisfies the closed world assumption
(i.e., for every employee there is a tuple in the table). �

An intuitive (but somewhat naive) solution, inspired by early work of Quillian [20], is
based on finding the shortest connections between concepts. Technically, this involves
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(i) finding the minimum spanning tree(s) (actually Steiner trees3) connecting the “corre-
sponded concepts” — those that have datatype properties corresponding to table
columns, and then (ii) encoding the tree(s) into formulas. However, in some cases the
spanning/Steiner tree may not provide the desired semantics for a table because of known
relational schema design rules. For example, consider the relational table Project
(name, supervisor), where the column name is the key and corresponds to the at-
tribute O:Worksite.hasName, and column supervisor corresponds to the attribute
O:Employee.hasSsn in Figure 1. The minimum spanning tree consisting of Worksite,
Employee, and the edge works on probably does not match the semantics of table
Project because there are multiple Employees working on a Worksite according to
the ontology cardinality, yet the table allows only one to be recorded, since supervisor
is functionally dependent on name, the key. Therefore we must seek a functional con-
nection from Worksite to Employee, and the connection will be the manager of the
department controlling the worksite. In this paper, we use ideas of standard relational
schema design from ER diagrams in order to craft heuristics that systematically uncover
the connections between the constructs of relational schemas and those of ontologies.
We propose a tool to generate “reasonable” trees connecting the set of corresponded con-
cepts in an ontology. In contrast to the graph theoretic results which show that there may
be too many minimum spanning/Steiner trees among the ontology nodes (for example,
there are already 5 minimum spanning trees connecting Employee, Department, and
Worksite in the very simple graph in Figure 1), we expect the tool to generate only a
small number of “reasonable” trees. These expectations are born out by our experimental
results, in Section 6.

As mentioned earlier, our approach is directly inspired by the Clio project [17,18],
which developed a successful tool that infers mappings from one set of relational tables
and/or XML schemas to another, given just a set of correspondences between their
respective attributes. Without going into further details at this point, we summarize the
contributions of this work:

– We identify a new version of the data mapping problem: that of inferring complex
formulas expressing the semantic mapping between relational database schemas
and ontologies from simple correspondences.

– We propose an algorithm to find “reasonable” tree connection(s) in the ontology
graph. The algorithm is enhanced to take into account information about the schema
(key and foreign key structure), the ontology (cardinality restrictions), and standard
database schema design guidelines.

– To gain theoretical confidence, we give formal results for a limited class of schemas.
We show that if the schema was designed from a CM using techniques well-known
in the Entity Relationship literature (which provide a natural semantic mapping and
correspondences for each table), then the tool will recover essentially all and only
the appropriate semantics. This shows that our heuristics are not just shots in the
dark: in the case when the ontology has no extraneous material, and when a table’s
scheme has not been denormalized, the algorithm will produce good results.

3 A Steiner tree for a set M of nodes in graph G is a minimum spanning tree of M that may
contain nodes of G which are not in M .
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– To test the effectiveness and usefulness of the algorithm in practice, we imple-
mented the algorithm in a prototype tool and applied it to a variety of database
schemas and ontologies drawn from a number of domains. We ensured that the
schemas and the ontologies were developed independently; and the schemas might
or might not be derived from a CM using the standard techniques. Our experience
has shown that the user effort in specifying complex mappings by using the tool is
significantly less than that by manually writing formulas from scratch.

The rest of the paper is structured as follows. We contrast our approach with related
work in Section 2, and in Section 3 we present the technical background and notation.
Section 4 describes an intuitive progression of ideas underlying our approach, while
Section 5 provides the mapping inference algorithm. In Section 6 we report on the
prototype implementation of these ideas and experiments with the prototype. Section 7
shows how to filter out unsatisfied mapping formulas by ontology reasoning. Section 8
discusses the issues of generating GAV mapping formulas. Finally, Section 9 concludes
and discusses future work.

2 Related Work

The Clio tool [17,18] discovers formal queries describing how target schemas can
be populated with data from source schemas. To compare with it, we could view the
present work as extending Clio to the case when the source schema is a relational data-
base while the target is an ontology. For example, in Example 1.1, if one viewed the
ontology as a relational schema made of unary tables (such as Employee(x1)), binary
tables (such as hasSsn(x1, ssn)) and the obvious foreign key constraints from binary
to unary tables, then one could in fact try to apply directly the Clio algorithm to the prob-
lem. The desired mapping formula from Example 1.1 would not be produced for several
reasons: (i) Clio [18] works by taking each table and using a chase-like algorithm to re-
peatedly extend it with columns that appear as foreign keys referencing other tables.
Such “logical relations” in the source and target are then connected by queries. In this
particular case, this would lead to logical relations such as works for �� Employee
�� Department, but none that join, through some intermediary, hasSsn(x1, ssn) and
hasDeptNumber(x2, dept), which is part of the desired formula in this case. (ii) The
fact that ssn is a key in the table T :Employee, leads us to prefer (see Section 4)
a many-to-one relationship, such as works for, over some many-to-many relation-
ship which could have been part of the ontology (e.g., O:previouslyWorkedFor);
Clio does not differentiate the two. So the work to be presented here analyzes the key
structure of the tables and the semantics of relationships (cardinality, IsA) to elimi-
nate/downgrade unreasonable options that arise in mappings to ontologies.

Other potentially relevant work includes data reverse engineering, which aims to
extract a CM, such as an ER diagram, from a database schema. Sophisticated algorithms
and approaches to this have appeared in the literature over the years (e.g., [15,9]). The
major difference between data reverse engineering and our work is that we are given
an existing ontology, and want to interpret a legacy relational schema in terms of it,
whereas data reverse engineering aims to construct a new ontology.
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Schema matching (e.g., [4,21]) identifies semantic relations between schema ele-
ments based on their names, data types, constraints, and schema structures. The primary
goal is to find the one-to-one simple correspondences which are part of the input for our
mapping inference algorithms.

3 Formal Preliminaries

We do not restrict ourselves to any particular language for describing ontologies in this
paper. Instead, we use a generic conceptual modeling language (CML), which contains
common aspects of most semantic data models, UML, ontology languages such as OWL,
and description logics. In the sequel, we use CM to denote an ontology prescribed by the
generic CML. Specifically, the language allows the representation of classes/concepts
(unary predicates over individuals), object properties/relationships (binary predicates
relating individuals), and datatype properties/attributes (binary predicates relating in-
dividuals with values such as integers and strings); attributes are single valued in this
paper. Concepts are organized in the familiar is-a hierarchy. Object properties, and their
inverses (which are always present), are subject to constraints such as specification of
domain and range, plus cardinality constraints, which here allow 1 as lower bounds
(called total relationships), and 1 as upper bounds (called functional relationships).

We shall represent a given CM using a labeled directed graph, called an ontology
graph. We construct the ontology graph from a CM as follows: We create a concept
node labeled with C for each concept C, and an edge labeled with p from the concept
node C1 to the concept node C2 for each object property p with domain C1 and range
C2; for each such p, there is also an edge in the opposite direction for its inverse, referred
to as p−. For each attribute f of concept C, we create a separate attribute node denoted
as Nf,C , whose label is f , and add an edge labeled f from node C to Nf,C .4 For
each is-a edge from a subconcept C1 to a superconcept C2, we create an edge labeled
with is-a from concept node C1 to concept node C2. For the sake of succinctness, we
sometimes use UML notations, as in Figure 1, to represent the ontology graph. Note that
in such a diagram, instead of drawing separate attribute nodes, we place the attributes
inside the rectangle nodes; and relationships and their inverses are represented by a
single undirected edge. The presence of such an undirected edge, labeled p, between
concepts C and D will be written in text as C ---p--- D . If the relationship p is
functional from C to D, we write C ---p->-- D . For expressive CMLs such as
OWL, we may also connect C to D by p if we find an existential restriction stating that
each instance of C is related to some instance or only instances of D by p.

For relational databases, we assume the reader is familiar with standard notions as
presented in [22], for example. We will use the notation T (K, Y ) to represent a rela-
tional table T with columns KY , and key K . If necessary, we will refer to the indi-
vidual columns in Y using Y [1], Y [2], . . ., and use XY as concatenation of columns.
Our notational convention is that single column names are either indexed or appear in
lower-case. Given a table such as T above, we use the notation key(T), nonkey(T) and
columns(T) to refer to K , Y and KY respectively. (Note that we use the terms “table”
and “column” when talking about relational schemas, reserving “relation(ship)” and

4 Unless ambiguity arises, we say “node C”, when we mean “concept node labeled C”.
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“attribute” for aspects of the CM.) A foreign key (abbreviated as f.k. henceforth) in T
is a set of columns F that references the key of table T ′, and imposes a constraint that
the projection of T on F is a subset of the projection of T ′ on key(T ′).

In this paper, a correspondence T.c �D.f relates column c of table T to attribute
f of concept D. Since our algorithms deal with ontology graphs, formally a corre-
spondence L will be a mathematical relation L(T, c, D, f, Nf,D), where the first two
arguments determine unique values for the last three. This means that we only treat
the case when a table column corresponds to single attribute of a concept, and leave
to future work dealing with complex correspondences, which may represent unions,
concatenations, etc.

Finally, for LAV-like mapping, we use Horn-clauses in the form T (X) :- Φ(X, Y ),
as described in Section 1, to represent semantic mappings, where T is a table with
columns X (which become arguments to its predicate), and Φ is a conjunctive formula
over predicates representing the CM, with Y existentially quantified, as usual.

4 Principles of Mapping Inference

Given a table T , and correspondencesL to an ontology provided by a person or a tool, let
the set CT consist of those concept nodes which have at least one attribute corresponding
to some column of T (i.e., D such that there is at least one tuple L( , , D, , )). Our
task is to find semantic connections between concepts in CT , because attributes can then
be connected to the result using the correspondence relation: for any node D, one can
imagine having edges f to M , for every entry L( , , D, f, M). The primary principle of
our mapping inference algorithm is to look for smallest “reasonable” trees connecting
nodes in CT . We will call such a tree a semantic tree.

As mentioned before, the naive solution of finding minimum spanning trees or Steiner
trees does not give good results, because it must also be “reasonable”. We aim to describe
more precisely this notion of “reasonableness”.

Consider the case when T (c, b) is a table with key c, corresponding to an attribute
f on concept C, and b is a foreign key corresponding to an attribute e on concept B.
Then for each value of c (and hence instance of C), T associates at most one value of
b (instance of B). Hence the semantic mapping for T should be some formula that acts
as a function from its first to its second argument. The semantic trees for such formulas
look like functional edges in the ontology, and hence are more reasonable. For example,
given table Dep(dept, ssn, . . .), and correspondences
T :Dep.dept �O:Department.hasDeptNumber
T :Dep.ssn �O:Employee.hasSsn
from the table columns to attributes of the ontology in Figure 1, the proper semantic tree
usesmanages− (i.e.,hasManager) rather thanworks_for− (i.e.,hasWorkers).

Conversely, for table T ′(c, b), where c and b are as above, an edge that is functional
from C to B, or from B to C, is likely not to reflect a proper semantics since it would
mean that the key chosen for T ′ is actually a super-key – an unlikely error. (In our
example, consider a table T (ssn, dept), where both columns are foreign keys.)

To deal with such problems, our algorithm works in two stages: first connects the
concepts corresponding to key columns into a skeleton tree, then connects the rest of
the corresponded nodes to the skeleton by functional edges (whenever possible).
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We must however also deal with the assumption that the relational schema and
the CM were developed independently, which implies that not all parts of the CM
are reflected in the database schema. This complicates things, since in building the
semantic tree we may need to go through additional nodes, which end up not cor-
responding to columns of the relational table. For example, consider again the table
Project(name, supervisor) and its correspondences mentioned in Section 1. Be-
cause of the key structure of this table, based on the above arguments we will prefer
the functional path5 controls−.manages− (i.e., controlledBy followed by
hasManager), passing through node Department, over the shorter path consisting
of edge works_on, which is not functional. Similar situations arise when the CM
contains detailed aggregation hierarchies (e.g., city part-of township part-of county
part-of state), which are abstracted in the database (e.g., a table with columns for city
and state only).

We have chosen to flesh out the above principles in a systematic manner by con-
sidering the behavior of our proposed algorithm on relational schemas designed from
Entity Relationship diagrams — a technique widely covered in undergraduate database
courses [22]. (We refer to this er2rel schema design.) One benefit of this approach is
that it allows us to prove that our algorithm, though heuristic in general, is in some
sense “correct” for a certain class of schemas. Of course, in practice such schemas may
be “denormalized” in order to improve efficiency, and, as we mentioned, only parts of
the CM may be realized in the database. Our algorithm uses the general principles enun-
ciated above even in such cases, with relatively good results in practice. Also note that
the assumption that a given relational schema was designed from some ER conceptual
model does not mean that given ontology is this ER model, or is even expressed in the
ER notation. In fact, our heuristics have to cope with the fact that it is missing essential
information, such as keys for weak entities.

To reduce the complexity of the algorithms, which essentially enumerate all trees,
and to reduce the size of the answer set, we modify an ontology graph by collapsing
multiple edges between nodes E and F , labeled p1, p2, . . . say, into at most three edges,
each labeled by a string of the form ′pj1 ; pj2 ; . . .′: one of the edges has the names of all
functions from E to F ; the other all functions from F to E; and the remaining labels on
the third edge. (Edges with empty labels are dropped.) Note that there is no way that our
algorithm can distinguish between semantics of the labels on one kind of edge, so the
tool offers all of them. It is up to the user to choose between alternative labels, though
the system may offer suggestions, based on additional information such as heuristics
concerning the identifiers labeling tables and columns, and their relationship to property
names.

5 Semantic Mapping Inference Algorithms

As mentioned, our algorithm is based in part on the relational database schema design
methodology from ER models. We introduce the details of the algorithm iteratively, by
incrementally adding features of an ER model that appear as part of the CM. We assume

5 One consisting of a sequence of edges, each of which represents a function from its source to
its target.
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that the reader is familiar with basics of ER modeling and database design [22], though
we summarize the ideas.

5.1 ER0: An Initial Subset of ER Notions

We start with a subset, ER0, of ER that supports entity sets E (called just “entity”
here), with attributes (referred to by attribs(E)), and binary relationship sets. In order
to facilitate the statement of correspondences and theorems, we assume in this section
that attributes in the CM have globally unique names. (Our implemented tool does not
make this assumption.) An entity is represented as a concept/class in our CM. A bi-
nary relationship set corresponds to two properties in our CM, one for each direction.
Such a relationship is called many-many if neither it nor its inverse is functional. A
strong entity S has some attributes that act as identifier. We shall refer to these using
unique(S) when describing the rules of schema design. A weak entity W has instead
localUnique(W ) attributes, plus a functional total binary relationship p (denoted as
idRel(W )) to an identifying owner entity (denoted as idOwn(W )).

Example 5.1. An ER0 diagram is shown in Figure 2, which has a weak entity Dependent
and three strong entities: Employee, Department, and Project. The owner entity of
Dependent is Employee and the identifying relationship is dependents of . Using the
notation we introduced, this means that
localUnique(Dependent) =deName, idRel(Dependent)= dependents of ,
idOwn(Dependent)= Employee. For the owner entity Employee,
unique(Employee)= hasSsn. �

-hasSsn
-hasName
-hasAddress
-hasAge

Employee
-hasDeptNumber
-hasName
-.
-.

Department
-deName
-birthDate
-gender
-relationship

Dependent

works_for participatesdependents_of
4..* 1..1 1..* 0..*1..10..*

-hasNumber
-hasName
-.
-.

Project

Fig. 2. An ER0 Example

Note that information about multi-attribute keys cannot be represented formally in even
highly expressive ontology languages such as OWL. So functions like unique are only
used while describing the er2rel mapping, and are not assumed to be available during
semantic inference. The er2rel design methodology (we follow mostly [15,22]) is de-
fined by two components. To begin with, Table 1 specifies a mapping τ(O) returning a
relational table scheme for every CM component O, where O is either a concept/entity
or a binary relationship. (For each relationship exactly one of the directions will be
stored in a table.)

In addition to the schema (columns, key, f.k.’s), Table 1 also associates with a rela-
tional table T (V ) a number of additional notions:

– an anchor, which is the central object in the CM from which T is derived, and
which is useful in explaining our algorithm (it will be the root of the semantic tree);
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Table 1. er2rel Design Mapping

ER Model object O Relational Table τ (O)

Strong Entity S columns: X

primary key: K

Let X=attribs(S) f.k.’s: none

Let K=unique(S) anchor: S

semantics: T (X) :- S(y),hasAttribs(y, X).

identifier: identifyS(y, K) :- S(y),hasAttribs(y, K).

Weak Entity W columns: ZX

let primary key: UX

E = idOwn(W ) f.k.’s: X

P = idrel(W ) anchor: W

Z=attribs(W ) semantics: T (X, U, V ) :- W (y), hasAttribs(y, Z), E(w),P (y, w),

X = key(τ(E)) identifyE(w, X).

U =localUnique(W ) identifier: identifyW (y, UX) :- W (y),E(w), P (y, w), hasAttribs(y, U),

V = Z − U identifyE(w, X).

Functional columns: X1X2

Relationship F primary key: X1

E1 --F->- E2 f.k.’s: Xi references τ(Ei),

let Xi = key(τ(Ei)) anchor: E1

for i = 1, 2 semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), F (y1, y2), E2(y2),

identifyE2
(y2, X2).

Many-many columns: X1X2

Relationship M primary key: X1X2

E1 --M-- E2 f.k.’s: Xi references τ(Ei),

let Xi = key(τ(Ei)) semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), M(y1, y2),E2(y2),

for i = 1, 2 identifyE2
(y2, X2).

– a formula for the semantic mapping for the table, expressed as a formula with head
T (V ) (this is what our algorithm should be recovering); in the body of the formula,
the function hasAttribs(x, Y ) returns conjuncts attrj(x, Y [j]) for the individual
columns Y [1], Y [2], . . . in Y , where attrj is the attribute name corresponded by
column Y [j].

– the formula for a predicate identifyC(x, Y ), showing how object x in (strong or
weak) entity C can be identified by values in Y 6.

Note that τ is defined recursively, and will only terminate if there are no “cycles” in the
CM (see [15] for definition of cycles in ER).

Example 5.2. When τ is applied to concept Employee in Figure 2, we get the
table T :Employee(hasSsn, hasName, hasAddress, hasAge), with the anchor
Employee, and the semantics expressed by the mapping:
T :Employee(hasSsn, hasName, hasAddress,hasAge) :-

O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),
O:hasAddress(y, hasAddress), O:hasAge(y, hasAge).

6 This is needed in addition to hasAttribs, because weak entities have identifying values spread
over several concepts.
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Its identifier is represented by
identifyEmployee(y, hasSsn) :- O:Employee(y), O:hasSsn(y, hasSsn).

In turn, τ(Dependent) produces the table T :Dependent(deName, hasSsn,
birthDate,...), whose anchor is Dependent. Note that the hasSsn column is a foreign
key referencing the hasSsn column in the T :Employee table. Accordingly, its seman-
tics is represented as:
T :Dependent(deName, hasSsn, birthDate, ...) :-

O:Dependent(y), O:Employee(w), O:dependents of(y, w),
identifyEmployee(w, hasSsn), O:deName(y, deName),
O:birthDate(y, birthDate) ...

and its identifier is represented as:
identifyDependent(y, deName,hasSsn) :-

O:Dependent(y), O:Employee(w), O:dependents of(y, w),
identifyEmployee(w, hasSsn), O:deName(y, deName).

τ can be applied similarly to the other objects in Figure 2. τ(works for) produces
the table works for(hasSsn, hasDeptNumber). τ(participates) generates the table
participates(hasNumber, hasDeptNumber). Please note that the anchor of the table
generated by τ(works for) is Employee, while no single anchor is assigned to the
table generated by τ(participates). �
The second step of the er2rel schema design methodology suggests that the schema
generated using τ can be modified by (repeatedly) merging into the table T0 of an en-
tity E the table T1 of some functional relationship involving the same entity E (which
has a foreign key reference to T0). If the semantics of T0 is T0(K, V ) :- φ(K, V ),
and of T1 is T1(K, W ) :- ψ(K, W ), then the semantics of table T=merge(T0,T1)
is, to a first approximation, T (K, V, W ) :- φ(K, V ), ψ(K, W ). And the anchor of T
is the entity E. (We defer the description of the treatment of null values which can
arise in the non-key columns of T1 appearing in T .) For example, we could merge the
table τ(Employee) with the table τ(works for) in Example 5.2 to form a new ta-
ble T :Employee2 (hasSsn, hasName, hasAddress, hasAge, hasDeptNumber),
where the column hasDeptNumber is an f.k. referencing τ(Department). The se-
mantics of the table is:
T :Employee2(hasSsn, hasName, hasAddress,hasAge,hasDeptNumber):-

O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),
O:hasAddress(y, hasAddress), O:hasAge(y, hasAge),
O:Department(w), O:works for(y, w), O:hasDeptNumber(w, hasDeptNumber).

Please note that one conceptual model may result in several different relational schemas,
since there are choices in which direction a one-to-one relationship is encoded (which
entity acts as a key), and how tables are merged. Note also that the resulting schema is
in Boyce-Codd Normal Form, if we assume that the only functional dependencies are
those that can be deduced from the ER schema (as expressed in FOL).

In this subsection, we assume that the CM has no so-called “recursive” relationships
relating an entity to itself, and no attribute of an entity corresponds to multiple columns
of any table generated from the CM. (We deal with these in Section 5.3.) Note that by
the latter assumption, we rule out for now the case when there are several relationships
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between a weak entity and its owner entity, such as hasMet connecting Dependent
and Employee, because in this case τ(hasMet) will need columns deName, ssn1,
ssn2, with ssn1 helping to identify the dependent, and ssn2 identifying the (other)
employee they met.

Now we turn to the algorithm for finding the semantics of a table in terms of a given
CM. It amounts to finding the semantic trees between nodes in the set CT singled out by
the correspondences from columns of the table T to attributes in the CM. As mentioned
previously, the algorithm works in several steps:

1. Determine a skeleton tree connecting the concepts corresponding to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns using shortest functional
paths to the skeleton/anchor tree.

3. Link any unaccounted-for concepts corresponding to other columns by arbitrary
shortest paths to the tree.

To flesh out the above steps, we begin with the tables created by the standard de-
sign process. If a table is derived by the er2rel methodology from an ER0 diagram,
then Table 1 provides substantial knowledge about how to determine the skeleton tree.
However, care must be taken when weak entities are involved. The following example
describes the right process to discover the skeleton and the anchor of a weak entity table.

Example 5.3. Consider table T :Dept(number, univ, dean), with foreign key (f.k.)
univ referencing table T :Univ(name, address) and correspondences shown in Fig-
ure 3. We can tell that T :Dept represents a weak entity since its key has one f.k. as a
subset (referring to the strong entity on which Department depends). To find the skele-
ton and anchor of the table T :Dept, we first need to find the skeleton and anchor of the
table referenced by the f.k. univ. The answer is University. Next, we should look
for a total functional edge (path) from the correspondent of number, which is con-
cept Department, to the anchor, University. As a result, the link Department

---belongsTo-->- University is returned as the skeleton, and Department
is returned as the anchor. Finally, we can correctly identify the dean relationship as the
remainder of the connection, rather than the president relationship, which would have
seemed a superficially plausible alternative to begin with.

Furthermore, suppose we need to interpret the table T :Portal(dept, univ, address)
with the following correspondences:
T : Portal.dept�O : Department.hasDeptNumber

T : Portal.univ�O : University.hasUnivName

T : Portal.address�O : Host.hostName,
where not only is {dept, univ} the key but also an f.k. referencing the key of table
T :Dept. To find the anchor and skeleton of table T :Portal, the algorithm first recur-
sively works on the referenced table. This is also needed when the owner entity of a
weak entity is itself a weak entity. �
The following is the function getSkeleton which returns a set of (skeleton, anchor)-
pairs, when given a table T and a set of correspondences L from key(T ). The function
is essentially a recursive algorithm attempting to reverse the function τ in Table 1.
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-hasUnivName
-hasAddres

University

-hasDeptNumber
-.

Department

-hasName

-hasBoD

Employee

belongsTo

0..* 0..1 0..*1..1 1..* -hostName
-.

Host

hasServerAt

president dean

1..11..1

0..10..1

Dept( number,univ , dean), univ and dean are f.k.s.

Fig. 3. Finding Correct Skeleton Trees and Anchors

In order to accommodate tables not designed according to er2rel, the algorithm has
branches for finding minimum spanning/Steiner trees as skeletons.

Function getSkeleton(T,L)
input: table T , correspondences L for key(T )
output: a set of (skeleton tree, anchor) pairs
steps:
Suppose key(T ) contains f.k.s F1,. . . ,Fn referencing tables T1(K1),..,Tn(Kn);

1. If n ≤ 1 and onc(key(T ))7 is just a singleton set {C}, then return (C, {C}).8/*T is likely
about a strong entity: base case.*/

2. Else, let Li={Ti.Ki�L(T, Fi)}/*translate corresp’s thru f.k. reference.*/;
compute (Ssi, Anci) = getSkeleton(Ti, Li), for i = 1, .., n.

(a) If key(T ) = F1, then return (Ss1, Anc1). /*T looks like the table for the functional
relationship of a weak entity, other than its identifying relationship.*/

(b) If key(T )=F1A, where columns A are not part of an f.k. then /*T is possibly a weak
entity*/

if Anc1 = {N1} and onc(A) = {N} such that there is a (shortest) total functional
path π from N to N1, then return (combine9(π, Ss1), {N}). /*N is a weak entity.
cf. Example 5.3.*/

(c) Else suppose key(T ) has non-f.k. columns A[1], . . . A[m], (m≥0); let Ns={Anci, i =
1, .., n} ∪ {onc(A[j]), j = 1, .., m}; find skeleton tree S′ connecting the nodes in Ns

where any pair of nodes in Ns is connected by a (shortest) non-functional path; return
(combine(S′, {Ssj}), Ns). /*Deal with many-to-many binary relationships; also the
default action for non-standard cases, such as when not finding identifying relationship
from a weak entity to the supposed owner entity. In this case no unique anchor exists.*/

7 onc(X) is the function which gets the set M of concepts corresponded by the columns X.
8 Both here and elsewhere, when a concept C is added to a tree, so are edges and nodes for C’s

attributes that appear in L.
9 Function combine merges edges of trees into a larger tree.
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In order for getSkeleton to terminate, it is necessary that there be no cycles in
f.k. references in the schema. Such cycles (which may have been added to represent
additional integrity constraints, such as the fact that a property is total) can be elim-
inated from a schema by replacing the tables involved with their outer join over the
key. getSkeleton deals with strong entities and their functional relationships in step
(1), with weak entities in step (2.b), and so far, with functional relationships of weak
entities in (2.a). In addition to being a catch-all, step (2.c) deals with tables represent-
ing many-many relationships (which in this section have key K = F1F2), by finding
anchors for the ends of the relationship, and then connecting them with paths that are
not functional, even when every edge is reversed.

To find the entire semantic tree of a table T , we must connect the concepts corre-
sponded by the rest of the columns, i.e., nonkey(T ), to the anchor(s). The connections
should be (shortest) functional edges (paths), since the key determines at most one value
for them; however, if such a path cannot be found, we use an arbitrary shortest path. The
following function, getTree, achieves the goal.

Function getTree(T,L)
input: table T , correspondences L for columns(T )
output: set of semantic trees 10

steps:

1. Let Lk be the subset of L containing correspondences from key(T );
compute (S′, Anc′)=getSkeleton(T ,Lk).

2. If onc(nonkey(T )) − onc(key(T )) is empty, then return (S′, Anc′). /*if all columns cor-
respond to the same set of concepts as the key does, then return the skeleton tree.*/

3. For each f.k. Fi in nonkey(T ) referencing Ti(Ki):
let Li

k = {Ti.Ki�L(T, Fi)}, and compute (Ss′′
i , Anc′′

i )= getSkeleton(Ti,Li
k). /*recall

that the function L(T, Fi) is derived from a correspondence L(T, Fi, D, f, Nf,D) such that
it gives a concept D and its attribute f (Nf,D is the attribute node in the ontology graph.)*/
find πi=shortest functional path from Anc′ to Anc′′

i ; let S = combine(S′, πi, {Ss′′
i }).

4. For each column c in nonkey(T) that is not part of an f.k., let N = onc(c); find π=shortest
functional path from Anc′ to N ; update S := combine(S, π). /*cf. Example 5.4.*/

5. In all cases above asking for functional paths, use a shortest path if a functional one does not
exist.

6. Return S.

The following example illustrates the use of getTree when seeking to interpret a ta-
ble using a different CM than the one from which it was originally derived.

Example 5.4. In Figure 4, the table T :Assignment(emp, proj, site) was originally de-
rived from a CM with the entity Assignment shown on the right-hand side of the vertical
dashed line. To interpret it by the CM on the left-hand side, the function getSkeleton, in
Step 2.c, returns Employee ---assignedTo--- Project as the skeleton, and
no single anchor exists. The set {Employee, Project} accompanying the skeleton is

10 To make the description simpler, at times we will not explicitly account for the possibility of
multiple answers. Every function is extended to set arguments by element-wise application of
the function to set members.
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returned. Subsequently, the function getTree seeks for the shortest functional link from
elements in {Employee, Project} to Worksite at Step 4. Consequently, it connects
Worksite to Employee via works on to build the final semantic tree. �

-employee

-project

-site

Assignment

-projNumber

Project

-empNumber

Employee

works_on

1..* 0..*

1..*

-siteName

Worksite

assignedTo

1..1

Assignment( emp ,proj ,site)

derived from

Fig. 4. Independently Developed Table and CM

To get the logic formula from a tree based on correspondence L, we provide the proce-
dure encodeTree(S, L) below, which basically assigns variables to nodes, and connects
them using edge labels as predicates.

Function encodeTree(S,L)
input: subtree S of ontology graph, correspondences L from table columns to attributes
of concept nodes in S.
output: variable name generated for root of S, and conjunctive formula for the tree.
steps: Suppose N is the root of S. Let Ψ = true.
1. if N is an attribute node with label f

find d such that L( , d, , f, N) = true;
return(d, true). /*for leaves of the tree, which are attribute nodes, return the corresponding

column name as the variable and the formula true.*/
2. if N is a concept node with label C, then introduce new variable x; add conjunct
C(x) to Ψ ;

for each edge pi from N to Ni /*recursively get the subformulas.*/
let Si be the subtree rooted at Ni,
let (vi, φi(Zi))=encodeTree(Si, L),
add conjuncts pi(x, vi) ∧ φi(Zi) to Ψ ;

3. return (x, Ψ).

Example 5.5. Figure 5 is the fully specified semantic tree returned by the algorithm for
the T :Dept(number, univ, dean) table in Example 5.3. Taking Department as the
root of the tree, function encodeTree generates the following formula:

Department(x), hasDeptNumber(x, number), belongsTo(x, v1), University(v1),
hasUnivName(v1, univ), dean(x, v2), Employee(v2), hasName(v2, dean).

As expected, the formula is the semantics the table T :Dept as assigned by the er2rel
design τ . �
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University Department Employee

belongsTo dean

hasUnivName hasDeptNumber hasName

hasUnivName hasNamehasDeptNumber

Fig. 5. Semantic Tree For Dept Table

Now we turn to the properties of the mapping algorithm. In order to be able to make
guarantees, we have to limit ourselves to “standard” relational schemas, since otherwise
the algorithm cannot possibly guess the intended meaning of an arbitrary table. For this
reason, let us consider only schemas generated by the er2rel methodology from a CM
encoding an ER diagram. We are interested in two properties: (1) A sense of “com-
pleteness”: the algorithm finds the correct semantics (as specified in Table 1). (2) A
sense of “soundness”: if for such a table there are multiple semantic trees returned by
the algorithm, then each of the trees would produce an indistinguishable relational table
according to the er2rel mapping. (Note that multiple semantic trees are bound to arise
when there are several relationships between 2 entities which cannot be distinguished
semantically in a way which is apparent in the table (e.g., 2 or more functional proper-
ties from A to B). To formally specify the properties, we have the following definitions.

A homomorphism h from the columns of a table T1 to the columns of a table T2 is
a one-to-one mapping h: columns(T1)→columns(T2), such that (i) h(c) ∈ key(T2)
for every c ∈ key(T1); (ii) by convention, for a set of columns F , h(F [1]F [2] . . .) is
h(F [1])h(F [2]) . . .; (iii) h(Y ) is an f.k. of T2 for every Y which is an f.k. of T1; and (iv)
if Y is an f.k. of T1, then there is a homomorphism from the key(T ′

1) of T ′
1 referenced

by Y to the key(T ′
2) of T ′

2 referenced by h(Y ) in T2.

Definition 1. A relational table T1 is isomorphic to another relational table T2, if there
is a homomorphism from columns(T1) to columns(T2) and vice versa.

Informally, two tables are isomorphic if there is a bijection between their columns which
preserves recursively the key and foreign key structures. These structures have direct
connections with the structures of the ER diagrams from which the tables were derived.
Since the er2rel mapping τ may generate the “same” table when applied to different ER
diagrams (considering attribute/column names have been handled by correspondences),
a mapping discovery algorithm with “good” properties should report all and only those
ER diagrams.

To specify the properties of the algorithm, suppose that the correspondence Lid is
the identity mapping from table columns to attribute names, as set up in Table 1. The
following lemma states the interesting property of getSkeleton.

Lemma 1. Let ontology graph G encode an ER0 diagram E . Let T = τ(C) be a rela-
tional table derived from an object C in E according to the er2rel rules in Table 1. Given
Lid from T to G, and L′ = the restriction of Lid to key(T), then getSkeleton(T, L′)
returns (S, Anc) such that,
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– Anc is the anchor of T (anchor(T )).
– If C corresponds to a (strong or weak) entity, then encodeTree(S, L′) is logically

equivalent to identifyC .

Proof The lemma is proven by using induction on the number of applications of the
function getSkeleton resulting from a single call on the table T .

At the base case, step 1 of getSkeleton indicates that key(T ) links to a single con-
cept in G. According to the er2rel design, table T is derived either from a strong en-
tity or a functional relationship from a strong entity. For either case, anchor(T ) is the
strong entity, and encodeTree(S, L′) is logically equivalent to identifyE , where E is
the strong entity.

For the induction hypothesis, we assume that the lemma holds for each table that is
referenced by a foreign key in T .

On the induction steps, step 2.(a) identifies that table T is derived from a functional
relationship from a weak entity. By the induction hypothesis, the lemma holds for the
weak entity. So does it for the relationship.

Step 2.(b) identifies that T is a table representing a weak entity W with an owner
entity E. Since there is only one total functional relationship from a weak entity to
its owner entity, getSkeleton correctly returns the identifying relationship. By the in-
duction hypothesis, we prove that encodeTree(S, L′) is logically equivalent to
identifyW . �
We now state the desirable properties of the mapping discovery algorithm. First, getTree
finds the desired semantic mapping, in the sense that

Theorem 1. Let ontology graph G encode an ER0 diagram E . Let table T be part of a
relational schema obtained by er2rel derivation from E . Given Lid from T to G, then
some tree S returned by getTree(T, Lid) has the property that the formula generated
by encodeTree(S, Lid) is logically equivalent to the semantics assigned to T by the
er2rel design.

Proof. Suppose T is obtained by merging the table for a entity E with tables represent-
ing functional relationships f1, . . . , fn, n ≥ 0, involving the same entity.

When n = 0, all columns will come from E, if it is a strong entity, or from E
and its owner entiti(es), whose attributes appear in key(T). In either case, step 2 of
getTree will apply, returning the skeleton S. encodeTree then uses the full original
correspondence to generate a formula where the attributes of E corresponding to non-
key columns generate conjuncts that are added to formula identifyE . Following Lemma
1, it is easy to show by induction on the number of such attributes that the result is
correct.

When n > 0, step 1 of getTree constructs a skeleton tree, which represents E by
Lemma 1. Step 3 adds edges f1, . . . , fn from E to other entity nodes E1, . . . , En re-
turned respectively as roots of skeletons for the other foreign keys of T . Lemma 1 also
shows that these translate correctly. Steps 4 and 5 cannot apply to tables generated
according to er2rel design. So it only remains to note that encodeTree creates the
formula for the final tree, by generating conjuncts for f1, . . . , fn and for the non-key
attributes of E, and adding these to the formulas generated for the skeleton subtrees at
E1, . . . , En.
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This leaves tables generated from relationships in ER0 — the cases covered in the
last two rows of Table 1 — and these can be dealt with using Lemma 1. �
Note that this result is non-trivial, since, as explained earlier, it would not be satisfied
by the current Clio algorithm [18], if applied blindly to E viewed as a relational schema
with unary and binary tables. Since getTree may return multiple answers, the following
converse “soundness” result is significant.

Theorem 2. If S′ is any tree returned by getTree(T, Lid), with T , Lid, and E as above
in Theorem 1, then the formula returned by encodeTree(S′, Lid) represents the seman-
tics of some table T ′ derivable by er2rel design from E , where T ′ is isomorphic to T .

Proof. The theorem is proven by showing that each tree returned by getTree will result
in table T ′ isomorphic to T .

For the four cases in Table 1, getTree will return a single semantic tree for a table
derived from an entity (strong or weak), and possibly multiple semantic trees for a (func-
tional) relationship table. Each of the semantic trees returned for a relationship table is
identical to the original ER diagram in terms of the shape and the cardinality constraints.
As a result, applying τ to the semantic tree generates a table isomorphic to T .

Now suppose T is a table obtained by merging the table for entity E with n tables
representing functional relationships f1, . . . , fn from E to some n other entities. The
recursive calls getTree in step 3 will return semantic trees, each of which represent
functional relationships from E. As above, these would result in tables that are isomor-
phic to the tables derived from the original functional relationships fi, i = 1...n. By the
definition of the merge operation, the result of merging these will also result in a table
T ′ which is isomorphic to T . �
We wish to emphasize that the above algorithms has been designed to deal even with
schemas not derived using er2rel from some ER diagram. An application of this was
illustrated already in Example 5.4. Another application of this is the use of functional
paths instead of just functional edges. The following example illustrates an interesting
scenario in which we obtained the right result.

Example 5.6. Consider the following relational table
T (personName, cityName, countryName),

where the columns correspond to, respectively, attributes pname, cname, and ctrname
of concepts Person, City and Country in a CM. If the CM contains a path such
that Person -- bornIn ->- City -- locatedIn ->- Country , then the
above table, which is not in 3NF and was not obtained using er2rel design (which
would have required a table for City), would still get the proper semantics:
T(personName, cityName, countryName) :-

Person(x1), City(x2),Country(x3), bornIn(x1,x2), locatedIn(x2,x3),
pname(x1,personName), cname(x2,cityName),ctrname(x3,countryName).

If, on the other hand, there was a shorter functional path from Person to Country, say
an edge labeled citizenOf, then the mapping suggested would have been:
T(personName, cityName, countryName) :-

Person(x1), City(x2), Country(x3), bornIn (x1,x2 ),citizenOf(x1,x3), ...
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which corresponds to the er2rel design. Moreover, had citizenOf not been func-
tional, then once again the semantics produced by the algorithm would correspond to the
non-3NF interpretation, which is reasonable since the table, having only personName
as key, could not store multiple country names for a person. �

5.2 ER1: Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, and to allow re-
lationship sets to have attributes in an ER model; we label the language allowing us to
model such aspects by ER1. Unfortunately, these features are not directly supported in
most CMLs, such as OWL, which only have binary relationships. Such notions must
instead be represented by “reified relationships” [3] (we use an annotation * to indicate
the reified relationships in a diagram): concepts whose instances represent tuples, con-
nected by so-called “roles” to the tuple elements. So, if Buys relates Person, Shop
and Product, through roles buyer, source and object, then these are explicitly repre-
sented as (functional) binary associations, as in Figure 6. And a relationship attribute,
such as when the buying occurred, becomes an attribute of the Buys concept, such as
whenBought.

Person

-whenBought

Buys* Shop

product

buyer source

object
1..1

0..*

1..11..1 0..* 0..*

Fig. 6. N-ary Relationship Reified

Unfortunately, reified relationships cannot be distinguished reliably from ordinary
entities in normal CMLs based on purely formal, syntactic grounds, yet they need to be
treated in special ways during semantic recovery. For this reason we assume that they
can be distinguished on ontological grounds. For example, in Dolce [7], they are sub-
classes of top-level concepts Quality and Perdurant/Event. For a reified relation-
ship R, we use functions roles(R) and attribs(R) to retrieve the appropriate (binary)
properties.

The er2rel design τ of relational tables for reified relationships is an extension of the
treatment of binary relationships, and is shown in Table 2. As with entity keys, we are
unable to capture in CM situations where some subset of more than one roles uniquely
identifies the relationship. The er2rel design τ on ER1 also admits the merge operation
on tables generated by τ . Merging applies to an entity table with other tables of some
functional relationships involving the same entity. In this case, the merged semantics is
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Table 2. er2rel Design for Reified Relationship

ER model object O Relational Table τ (O)

Reified Relationship R columns: ZX1 . . . Xn

if there is a functional primary key: X1

role r1 for R f.k.’s: X1, . . . , Xn

E1 --<- r1 ->-- R anchor: R

--- rj ->-- Ej semantics: T (ZX1 . . . Xn) :- R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

let Z=attribs(R) identifyEi
(wi, Xi), . . .

Xi=key(τ(Ei)) identifier: identifyR(y, X1) :- R(y), E1(w), r1(y, w),

where Ei fills role ri identifyE1
(w, X1).

Reified Relationship R columns: ZX1 . . . Xn

if r1, . . . , rn are roles of R primary key: X1 . . . Xn

let Z=attribs(R) f.k.’s: X1, . . . , Xn

Xi=key(τ(Ei)) anchor: R

where Ei fills role ri semantics: T (ZX1 . . . Xn) :- R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

identifyEi
(wi, Xi), . . .

identifier: identifyR(y, . . . Xi . . .) :- R(y), . . . Ei(wi), ri(y, wi),

identifyEi
(wi, Xi),...

the same as that of merging tables obtained by applying τ to ER0, with the exception
that some functional relationships may be reified.

To discover the correct anchor for reified relationships and get the proper tree, we
need to modify getSkeleton, by adding the following case between steps 2(b) and 2(c):

– If key(T )=F1F2 . . . Fn and there exist reified relationship R with n roles r1, . . . , rn

pointing at the singleton nodes in Anc1, . . . , Ancn respectively,
then let S = combine({rj}, {Ssj}), and return (S, {R}).

getTree should compensate for the fact that if getSkeleton finds a reified version of a
many-many binary relationship, it will no longer look for an unreified one in step 2c.
So after step 1. we add

– if key(T ) is the concatenation of two foreign keys F1F2, and nonkey(T) is empty,
compute (Ss1,Anc1) and (Ss2, Anc2) as in step 2. of getSkeleton; then find
ρ=shortest many-many path connecting Anc1 to Anc2;
return (S′) ∪ (combine(ρ, Ss1, Ss2))

In addition, when traversing the ontology graph for finding shortest paths in both func-
tions, we need to recalculate the lengths of paths when reified relationship nodes are
present. Specifically, a path of length 2 passing through a reified relationship node
should be counted as a path of length 1, because a reified binary relationship could
have been eliminated, leaving a single edge.11 Note that a semantic tree that includes a
reified relationship node is valid only if all roles of the reified relationship have been in-
cluded in the tree. Moreover, if the reified relation had attributes of its own, they would
show up as columns in the table that are not part of any foreign key. Therefore, a filter
is required at the last stage of the algorithm:
11 A different way of “normalizing” things would have been to reify even binary associations.
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– If a reified relationship R appears in the final semantic tree, then so must all its
role edges. And if one such R has as attributes the columns of the table which do
not appear in foreign keys or the key, then all other candidate semantics need to be
eliminated.

The previous version of getTree was set up so that with these modifications, roles and
attributes to reified relationships will be found properly.

If we continue to assume that no more than one column corresponds to the same
entity attribute, the previous theorems hold for ER1 as well. To see this, consider the
following two points. First, the tree identified for any table generated from a reified re-
lationship is isomorphic to the one from which it was generated, since the foreign keys
of the table identify exactly the participants in the relationship, so the only ambiguity
possible is the reified relationship (root) itself. Second, if an entity E has a set of (bi-
nary) functional relationships connecting to a set of entities E1,. . .,En, then merging
the corresponding tables with τ(E) results in a table that is isomorphic to a reified re-
lationship table, where the reified relationship has a single functional role with filler E
and all other role fillers are the set of entities E1,. . .,En.

5.3 Replication

We next deal with the equivalent of the full ER1 model, by allowing recursive relation-
ships, where a single entity plays multiple roles, and the merging of tables for different
functional relationships connecting the same pair of entity sets (e.g., works_for and
manages). In such cases, the mapping described in Table 1 is not quite correct because
column names would be repeated in the multiple occurrences of the foreign key. In our
presentation, we will distinguish these (again, for ease of presentation) by adding su-
perscripts as needed. For example, if entity set Person, with key ssn, is connected to
itself by the likes property, then the table for likes will have schema T [ssn1, ssn2].

During mapping discovery, such situations are signaled by the presence of multi-
ple columns c and d of table T corresponding to the same attribute f of concept C.
In such situations, we modify the algorithm to first make a copy Ccopy of node C,
as well as its attributes, in the ontology graph. Furthermore, Ccopy participates in all
the object relations C did, so edges for this must also be added. After replication, we
can set onc(c) = C and onc(d) = Ccopy , or onc(d) = C and onc(c) = Ccopy

(recall that onc(c) retrieves the concept corresponded to by column c in the algo-
rithm). This ambiguity is actually required: given a CM with Person and likes as
above, a table T [ssn1, ssn2] could have two possible semantics: likes(ssn1, ssn2) and
likes(ssn2, ssn1), the second one representing the inverse relationship, likedBy. The
problem arises not just with recursive relationships, as illustrated by the case of a ta-
ble T [ssn, addr1, addr2], where Person is connected by two relationships, home and
office, to concept Building, which has an address attribute.

The main modification needed to the getSkeleton and getTree algorithms is that
no tree should contain two or more functional edges of the form D --- p ->-- C

and its replicate D --- p ->-- Ccopy , because a function p has a single value, and

hence the different columns of a tuple corresponding to it will end up having identical
values: a clearly poor schema.
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As far as our previous theorems, one can prove that by making copies of an entity E
(say E and Ecopy), and also replicating its attributes and participating relationships, one
obtains an ER diagram from which one can generate isomorphic tables with identical
semantics, according to the er2rel mapping. This will hold true as long as the predicate
used for both E and Ecopy is E( ); similarly, we need to use the same predicate for the
copies of the attributes and associations in which E and Ecopy participate.

Even in this case, the second theorem may be in jeopardy if there are multiple possi-
ble “identifying relationships” for a weak entity, as illustrated by the following example.

Example 5.7. An educational department in a provincial government records the trans-
fers of students between universities in its databases. A student is a weak entity de-
pending for identification on the university in which the student is currently registered.
A transfered student must have registered in another university before transferring. The
table T :Transferred(sno, univ, sname) records who are the transferred students,
and their name. The table T :previous(sno, univ, pUniv) stores the information about
the previousUniv relationship. A CM is depicted in Figure 7. To discover the seman-

-sno

-sname

TransferredStudent

-name

-address

University
registerIn

previousUniv

1..11..*

0..* 1..1

TransferredStudent( sno,univ ,sname )

Fig. 7. A Weak Entity and Its Owner Entity

tics of table T :Transferred, we link the columns to the attributes in the CM as shown
in Figure 7. One of the skeletons returned by the algorithm for the T :Transferred

will be TransferredStudent --- previousUniv ->-- University .
But the design resulting from this according to the er2rel mapping is not isomorphic
to key(Transferred), since previousUniv is not the identifying relationship of the
weak entity TransferredStudent. �
From above example, we can see that the problem is the inability of CMLs such as
UML and OWL to fully capture notions like “weak entity” (specifically the notion of
identifying relationship), which play a crucial role in ER-based design. We expect such
cases to be quite rare though – we certainly have not encountered any in our example
databases.

5.4 Extended ER: Adding Class Specialization

The ability to represent subclass hierarchies, such as the one in Figure 8 is a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [22]) describe several techniques for designing relational
schemas in the presence of class hierarchies
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1. Map each concept/entity into a separate table following the standard er2rel rules.
This approach requires two adjustments: First, subclasses must inherit identifying
attributes from a single super-class, in order to be able to generate keys for their
tables. Second, in the table created for an immediate subclass C′ of class C, its
key key(τ(C′)) should also be set to reference as a foreign key τ(C), as a way of
maintaining inclusion constraints dictated by the is-a relationship.

2. Expand inheritance, so that all attributes and relations involving a class C appear on
all its subclasses C′. Then generate tables as usual for the subclasses C′, though not
for C itself. This approach is used only when the subclasses cover the superclass.

3. Some researchers also suggest a third possibility: “Collapse up” the information
about subclasses into the table for the superclass. This can be viewed as the result
of merge(TC , TC′), where TC(K, A) and TC′(K, B) are the tables generated for
C and its subclass C′ according to technique (1.) above. In order for this design to
be “correct”, [15] requires that TC′ not be the target of any foreign key references
(hence not have any relationships mapped to tables), and that B be non-null (so that
instances of C′ can be distinguished from those of C).

-ss#

Person

-college

Faculty

-csrId

Course

Assist. ProfessorProfessor Lecturer

teach

coord

1..* 0..1

0..1

1..*

Fig. 8. Specialization Hierarchy

The use of the key for the root class, together with inheritance and the use of foreign
keys to also check inclusion constraints, make many tables highly ambiguous. For ex-
ample, according to the above, table T (ss#, crsId), with ss# as the key and a foreign
key referencing T ′, could represent at least
(a) Faculty teach Course
(b) Lecturer teach Course
(c) Lecturer coord Course.
This is made combinatorially worse by the presence of multiple and deep hierarchies
(e.g., imagine a parallel Course hierarchy), and the fact that not all ontology concepts
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are realized in the database schema, according to our scenario. For this reason, we have
chosen to deal with some of the ambiguity by relying on users, during the establishment
of correspondences. Specifically, the user is supposed to provide a correspondence from
column c to attribute f on the lowest class whose instances provide data appearing in
the column. Therefore, in the above example of table T (ss#, crsId), ss# should be
set to correspond to ssn on Faculty in case (a), while in cases (b) and (c) it should
correspond to ss# on Lecturer. This decision was also prompted by the CM manip-
ulation tool that we are using, which automatically expands inheritance, so that ss#
appears on all subclasses.

Under these circumstances, in order to deal appropriately with designs (1.) and (2.)
above, we do not need to modify our earlier algorithm in any way, as long as we first ex-
pand inheritance in the graph. So the graph would show Lecturer -- teaches;

coord ->- Course in the above example, and Lecturer would have all the at-
tributes of Faculty.

To handle design (3.), we add to the graph an actual edge for the inverse of the
is-a relation: a functional edge labeled alsoA, with lower-bound 0; e.g., Faculty

--- alsoA ->-- Lecturer . It is then sufficient to allow in getTree for func-
tional paths between concepts to include alsoA edges; e.g., Faculty can now be
connected to Course through path alsoA followed by coord. The alsoA edge is
translated into the identity predicate, and it is assigned cost zero in evaluating a func-
tional path mixed with alsoA edge and other ordinary functional edges.12

In terms of the properties of the algorithm we have been considering so far, the above
three paragraphs have explained that among the answers returned by the algorithm will
be the correct one. On the other hand, if there are multiple results returned by the al-
gorithm, as shown in Example 5.7, some semantic trees may not result in isomorphic
tables to the original table, if there are more than one total functional relationships from
a weak entity to its owner entity.

5.5 Outer Joins

The observant reader has probably noticed that the definition of the semantic mapping
for T = merge(TE , Tp), where TE(K, V ) :- φ(K, V ) and Tp(K, W ) :- ψ(K, W ), was
not quite correct: T (K, V, W ):-φ(K, V ),ψ (K, W ) describes a join on K , rather than
a left-outer join, which is what is required if p is a non-total relationship. In order to
specify the equivalent of outer joins in a perspicuous manner, we will use conjuncts
of the form �µ(X, Y )�Y , which will stand for the formula µ(X, Y ) ∨ (Y = null ∧
¬∃Z.µ(X, Z)), indicating that null should be used if there are no satisfying values for
the variables Y . With this notation, the proper semantics for merge is T (K, V, W ) :
−φ(K, V ), �ψ(K, W )�W .

In order to obtain the correct formulas from trees, encodeTree needs to be modified
so that when traversing a non-total edge pi that is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the possibility of vi not existing.

12 It seems evident that if B is-a C, and B is associated with A via p, then this is a stronger
semantic connection between C and A than if C is associated to D via a q1, and D is associated
to A via q2.
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6 Implementation and Experimentation

So far, we have developed the mapping inference algorithm by investigating the con-
nections between the semantic constraints in relational models and that in ontologies.
The theoretical results show that our algorithm will report the “right” semantics for
most schemas designed following the widely accepted design methodology. Nonethe-
less, it is crucial to test the algorithm in real-world schemas and ontologies to see its
overall performance. To do this, we have implemented the mapping inference algorithm
in our prototype system MAPONTO, and have applied it on a set of real-world schemas
and ontologies. In this section, we describe the implementation and provide some evi-
dence for the effectiveness and usefulness of the prototype tool by discussing the set of
experiments and our experience.

Implementation. We have implemented the MAPONTO tool as a third-party plugin of
the well-known KBMS Protégé13 which is an open platform for ontology modeling and
knowledge acquisition. As OWL becomes the official ontology language of the W3C,
intended for use with Semantic Web initiatives, we use OWL as the CML in the tool.
This is also facilitated by the Protégé’s OWL plugin [12], which can be used to edit
OWL ontologies, to access reasoners for them, and to acquire instances for semantic
markup. The MAPONTO plugin is implemented as a full-size user interface tab that
takes advantage of the views of Protégé user interface. As shown in Figure 9, users
can choose database schemas and ontologies, create and manipulate correspondences,
generate and edit candidate mapping formulas and graphical connections, and produce
and save the final mappings into designated files. In addition, there is a library of other
Protégé plugins that visualize ontologies graphically and manage ontology versions.
Those plugins sustain our goal of providing an interactively intelligent tool to data-
base administrators so that they may establish semantic mappings from the database to
ontologies more effectively.

Schemas and Ontologies. Our test data were obtained from various sources, and we
have ensured that the databases and ontologies were developed independently. The test
data are listed in Table 3. They include the following databases: the Department of
Computer Science database in the University of Toronto; the VLDB conference data-
base; the DBLP computer science bibliography database; the COUNTRY database ap-
pearing in one of reverse engineering papers [11] (Although the country schema is not
a real-world database, it appears as a complex experimental example in [11], and has
some reified relationship tables, so we chose it to test this aspect of our algorithm); and
the test schemas in OBSERVER [16] project. For the ontologies, our test data include:
the academic department ontology in the DAML library; the academic conference on-
tology from the SchemaWeb ontology repository; the bibliography ontology in the li-
brary of the Stanford’s Ontolingua server; and the CIA factbook ontology. Ontologies
are described in OWL. For each ontology, the number of links indicates the number
of edges in the multi-graph resulted from object properties. We have made all these
schemas and ontologies available on our web page: www.cs.toronto.edu/ ˜yuana/research
/maponto/relational/testData.html.

13 http://protege.stanford.edu
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Fig. 9. MAPONTO Plugin of Protege

Table 3. Characteristics of Schemas and Ontologies for the Experiments

Database Schema Number of Number of Ontology Number of Number of

Tables Columns Nodes Links

UTCS Department 8 32 Academic Department 62 1913

VLDB Conference 9 38 Academic Conference 27 143

DBLP Bibliography 5 27 Bibliographic Data 75 1178

OBSERVER Project 8 115 Bibliographic Data 75 1178

Country 6 18 CIA factbook 52 125

Results and Experience. To evaluate our tool, we sought to understand whether the
tool could produce the intended mapping formula if the simple correspondences were
given. We were especially concerned with the number of formulas presented by the tool
for users to sift through. Further, we wanted to know whether the tool was still useful if
the correct formula was not generated. In this case, we expected that a user could more
easily debug a generated formula to reach the correct one instead of creating it from
scratch. A summary of the experimental results are listed in Table 4 which shows the
average size of each relational table schema in each database, the average number of
candidates generated, and the average time for generating the candidates. Notice that
the number of candidates is the number of semantic trees obtained by the algorithm.
Also, a single edge of an semantic tree may represent the multiple edges between two
nodes, collapsed using our p; q abbreviation. If there are m edges in a semantic tree and
each edge has ni (i = 1, .., m) original edges collapsed, then there are

∏m
i ni original

semantic trees. We show below a formula generated from such a collapsed semantic
tree:TaAssignment(courseName, studentName) :-



Discovering the Semantics of Relational Tables Through Mappings 27

Course(x1), GraduateStudent(x2), [hasTAs;takenBy](x1,x2),
workTitle(x1,courseName), personName(x2,studentName).

where, in the semantic tree, the node Course and the node GraduateStudent are
connected by a single edge with label hasTAs;takenBy, which represents two separate
edges, hasTAs and takenBy.

Table 4. Performance Summary for Generating Mappings from Relational Tables to Ontologies

Database Schema Avg. Number of Avg. Number of Avg. Execution

Cols/per table Candidates generated time(ms)

UTCS Department 4 4 279

VLDB Conference 5 1 54

DBLP Bibliography 6 3 113

OBSERVER Project 15 2 183

Country 3 1 36

Table 4 indicates that MAPONTO only presents a few mapping formulas for users to
examine. This is due in part to our compact representation of parallel edges between
two nodes shown above. To measure the overall performance, we manually created the
mapping formulas for all the 36 tables and compared them to the formulas generated by
the tool. We observed that the tool produced correct formulas for 31 tables. This demon-
strates that the tool is able to infer the semantics of many relational tables occurring in
practice in terms of an independently developed ontology.

We were also interested in the usefulness of the tool in those cases where the formu-
las generated were not the intended ones. For each such formula, we compared it to the
manually generated correct one, and we used a very coarse measurement to record how
much effort it would take to “debug” the generated formula: the number of changes of
predicate names in a formula. For example, the tool generated the following formula
for the table Student(name, office, position, email, phone, supervisor):

Student(x1), emailAddress(x1,email), personName(x1,name), Professor(x2),
Department(x3), head(x3,x2), affiliatedOf(x3,x1),
personName(x2, supervisor)... (1)

If the intended semantics for the above table columns is:

Student(x1), emailAddress(x1,email), personName(x1,name), Professor(x2),
ResearchGroup(x3), head(x3,x2), affiliatedOf(x3,x1),
personName(x2, supervisor)... (2)

then one can change the predicate Department(x3) to ResearchGroup(x3) in formula (1)
instead of writing the entire formula (2) from scratch. Our experience working with the
data sets shows that at average only about 30% predicates in a single incorrect formula
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returned by the MAPONTO tool needed to be modified to reach the correct formula. This
is a significant saving in terms of human labors.

Tables 4 indicate that execution times were not significant, since, as predicted, the
search for subtrees and paths took place in a relatively small neighborhood.

We believe it is instructive to consider the various categories of problematic schemas
and mappings, and the kind of future work they suggest.

(i) Absence of tables which should be present according to er2rel. For example, we
expect the connection Person -- researchInterest --- Research to be
returned for the table AreaOfInterest(name, area). However, MAPONTO returned
Person -<- headOf --- ResearchGroup -<- researchProject ---

Research , because there was no table for the concept Research in the schema,
and so MAPONTO treated it as a weak entity table. Such problems are caused, among
others, by the elimination of tables that represent finite enumerations, or ones that can
be recovered by projection from tables representing total many-to-many relationships.
These pose an important open problem for now.

(ii) Mapping formula requiring selection. The table European(country, gnp) means
countries which are located in Europe. From the database point of view, this selects
tuples representing European countries. Currently, MAPONTO is incapable of generat-
ing formulas involving the equivalent to relational selection. This particular case is an
instance of the need to express “higher-order” correspondences, such as between ta-
ble/column names and ontology values. A similar example appears in [17].

(iii) Non-standard design. One of the bibliography tables had columns for author
and otherAuthors for each document. MAPONTO found a formula that was close to the
desired one, with conjuncts hasAuthor(d, author), hasAuthor(d, otherAuthors),
but not surprisingly, could not add the requirement that otherAuthors is really the
concatenation of all but the first author.

7 Filtering Mappings Through Ontology Reasoning

Rich ontologies provide a new opportunity for eliminating “unreasonable” mappings.
For example, suppose the ontology specifies that in a library, once a book is reserved for
an event, it cannot be borrowed by a person. In this case, a candidate semantic formula
such as

Book(x), borrow(x, y), Person(y), reservedFor(x, z), Event(z)

can be eliminated, since no objects x can satisfy it14.
When ontologies, which include constraints such as the one about borrowing and

reservedFor, are expressed in OWL, one can use OWL reasoning to detect these prob-
lems. To do so, one first translates the semantic tree into an OWL concept, and then
checks it for (un)satisfiability in the context of the ontology axioms, using the standard
reasoning algorithms for Description Logics.

14 Maybe a relationship like contactAuthor(x, y), different from borrow(x, y), needs to be
used.
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For example, the above formula is equivalent to the OWL concept:

<owl:intersectionOf>
<owl:Class rdf:about="#Book"/>
<owl:Restriction>

<owl:onProperty rdf:resource=#borrow/>
<owl:someValuesFrom rdf:resource="#Person"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource=#reservedFor/>
<owl:someValuesFrom rdf:resource="#Event"/>

</owl:Restriction>
</owl:intersectionOf>

The algorithm for performing this translation in general, encodeTreeAsConcept(S),
is almost identical to encodeTree, except that the recursive calls return OWL concepts
Ci, which lead to conjuncts of the form restriction(pi, someValuesFrom(Ci)):

Function encodeTreeAsConcept(S)
input: subtree S of ontology graph
output: abstract syntax of OWL concept logically equivalent to the FOL formula
encodeTree(S, L)
steps: Suppose N is the root of S.
1. if N is an attribute node with label f

return restriction(f ,minCardinality(1)). /*for leaves of the tree, which are attribute
nodes, just ensure that the attribute is present.*/
2. if N is a concept node with label C, then initialize Ψ to be intersectionOf(C);

for each edge pi from N to Ni /*recursively get the restrictions */
let Si be the subtree rooted at Ni;
let φi=encodeTreeAsConcept(Si);
add to Ψ a someValuesFrom(φi) restriction on pi.

3. return Ψ .

The ontologies we have found so far are unfortunately not sufficiently rich to demon-
strate the usefulness of this idea.

8 Finding GAV Mappings

Arguments have been made that the proper way to connect ontologies and databases for
the purpose of information integration is to show how concepts and properties in the
ontology can be expressed as queries over the database – the so-called GAV approach.

To illustrate the idea, consider Example 1.1, from Section 1, where the semantic
mapping we proposed was
T :Employee(ssn, name, dept, proj) :-

O:Employee(x1), O:hasSsn(x1,ssn), O:hasName(x1,name), O:Department(x2),
O:works for(x1,x2), O:hasDeptNumber(x2,dept), O:Worksite(x3), O:works on(x1,x3),
O:hasNumber(x3,proj).
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In this case, we are looking for formulas which express O:Department, O:works on,
etc. in terms of T :Employee, etc., as illustrated below.

We note that a strong motivation for mappings between ontologies and databases
expressed in this way is that they can be used to populate the ontology with instances
from the database – a task that is expected to be important for the Semantic Web.

An essential initial step is dealing with the fact that in the ontology (as in object
oriented databases), objects have intrinsic identity, which is lost in the relational data
model, where this notion is replaced by external identifiers/keys. For this purpose, the
standard approach is to introduce special Skolem functions that generate these identi-
fiers from the appropriate keys, as in:

O:Employee(ff(ssn)) :- T :Employee(ssn, , , ).
One then needs to express the external identifiers using axioms that relate these Skolem
functions with the appropriate ontology attributes:

O:hasSsn(ff(ssn),ssn) :- T :Employee(ssn, , , ).
Finally, one can express the associations by using the above identifiers:

O:works on(ff(ssn),gg(dept)) :- T :Employee(ssn, ,dept, ).
The following less ad-hoc approach leads to almost identical results, but relies on the

logical translation of the original mapping, found by the algorithms presented earlier in
this paper. For example, the actual semantics of table T :Employee is expressed by the
formula

(∀ssn, name, dept, proj) T :Employee(ssn, name, dept, proj) ⇒
(∃x, y, z) O:Employee(x)∧ O:hasSsn(x,ssn) ∧ O:hasName(x,name) ∧
O:Department(y) ∧ O:hasDeptNumber(y,dept) ∧ O:works for(x,y) ∧
O:Worksite(z) ∧ O:works on(x,z) ∧ O:hasNumber(z,proj).

The above formula can be Skolemized to eliminate the existential quantifiers to yield15:
(∀ssn, name, dept) T :Employee(ssn, name, dept) ⇒

O:Employee(f(ssn, name, dept)) ∧ O:hasSsn(f(ssn, name, dept),ssn) ∧
O:hasName(f(ssn, name, dept),name) ∧ O:Department(g(ssn, name, dept)) ∧
O:hasDeptNumber(g(ssn, name, dept),dept)∧
O:works for(f(ssn, name, dept),g(ssn, name, dept)).

This implies logically a collection of formulas, including
(∀ssn, name, dept) O:Employee(f(ssn, name, dept)) ⇐ T :Employee(ssn, name, dept).
(∀ssn, name, dept) O:hasSsn(f(ssn, name, dept),ssn) ⇐ T :Employee(ssn, name, dept).
(∀ssn, name, dept) O:works for(f(ssn, name, dept),g(ssn, name, dept)) ⇐

T :Employee(ssn, name, dept).
Note however that different tables, such as T :manages(ssn, dept) say, introduce dif-
ferent Skolem functions, as in :

O:Employee(h(ssn, dept)) ⇐ T :manages(ssn, dept).
O:hasSsn(h(ssn, dept),ssn) ⇐ T :manages(ssn, dept).

Unfortunately, this appears to leave open the problem of connecting the ontology indi-
viduals obtained from T :manages and T :Employee. The answer is provided by the
fact that O:hasSsn is inverse functional (ssn is a key), which means that there should
be an ontology axiom

(∀u, v, ssn) O:hasSsn(u, ssn) ∧ O:hasSsn(v, ssn) ⇒ u = v

15 For simplicity, we eliminate henceforth the part dealing with projects.
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This implies, among others, that
(∀ssn, name, dept) f(ssn, name, dept) = h(ssn, dept).

So we need to answer queries over the ontology using all such axioms.

A final, important connection to make in this case is with the research on answering
queries using views [6]: The semantic mappings found by the earlier algorithms in this
paper can be regarded as view definitions for each relational tables, using conjunctive
queries over ontology predicates (“tables”). What we are seeking in this section is an-
swers to queries phrased in terms of the ontology predicates, but rephrased in terms of
relational tables, where the data instances reside — which is exactly the problem of
query answering using views. The kind of rules we proposed earlier in this section are
known as “inverse rules” [19], and in fact Duschka and Levy [5] even deal (implicitly)
with the alias problem we mentioned above by their solution to the query answering
problem in the presence of functional dependencies: keys functionally determine the
rest of the columns in the table.

The one difference in our case worth noting is that we are willing to countenance
answers which contain Skolem functions (since this is how we generate object id’s in
the ontology).

9 Conclusion and Future Work

We have proposed a heuristic algorithm for inferring semantic mapping formulas be-
tween relational tables and ontologies starting from simple correspondences. Our algo-
rithm relies on information from the database schema (key and foreign key structure)
and the ontology (cardinality restrictions, is-a hierarchies). Theoretically, our algorithm
infers all and only the relevant semantics if a relational schema was generated using
standard database design principles. In practice, our experience working with indepen-
dently developed schemas and ontologies has shown that significant effort can be saved
in specifying the LAV mapping formulas.

Numerous additional sources of knowledge, including richer ontologies, actual data
stored in the tables, linguistic and semantic relationships between identifiers in tables
and the ontology, can be used to refine the suggestions of MAPONTO, including provid-
ing a rank ordering for them. As in the original Clio system, more complex correspon-
dences (e.g., from columns to sets of attribute names or class names), should also be
investigated in order to generate the full range of mappings encountered in practice.
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Abstract. This paper describes two different ways of understanding operation 
contracts in conceptual modeling: the strict and extended interpretations. The 
main difference between them lies in the way operation postconditions and 
integrity constraints are guaranteed, which has an impact on the desirable 
properties of operation contracts according to recommended good practice for 
requirements specification. Both interpretations are formalized and compared in 
terms of these properties. We find that the strict interpretation provides several 
advantages over the extended one. This conclusion is supported by evidence 
from a case study. The results of the case study also indicate that the strict 
interpretation significantly facilitates the specification task.  

1  Introduction 

An information system maintains a representation of the state of a domain in its 
information base. The state of the information base is the set of instances of the entity 
and relationship types defined in the conceptual schema. In addition, a conceptual 
schema contains a set of integrity constraints that define conditions that each state of 
the information base must satisfy. 

The content of the information base is changed by the execution of operations. The 
effect of an operation on the information base is usually defined using preconditions 
and postconditions. A precondition expresses a condition that the information base 
must satisfy when the call to the operation is made. A postcondition expresses a 
condition that the information base must satisfy following application of the 
operation. 

Several books on conceptual modeling deal with both the structural and the 
behavioral components of a conceptual schema and give precise definitions for 
integrity constraints, as well as for preconditions and postconditions [4, 10, 11, 13, 17, 
20, 22]. However, they usually pay little attention to the precise semantics of 
operation contracts, since they do not generally establish an explicit relationship 
between operation postconditions and the integrity constraints defined in the con
ceptual schema. This is an important  open  issue  in conceptual modeling, since the 
semantics of an operation should precisely define both the conditions under which the 
operation can be applied and the new state of the information base obtained as a result 
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of its execution. The latter cannot be defined if we do not establish the precise way in 
which satisfaction of integrity constraints is guaranteed once the postcondition of the 
operation is satisfied. 

This paper describes two different ways in which operation contracts can be 
understood in conceptual modeling: the strict and the extended interpretations. The 
main difference between them lies in the way in which operation postconditions and 
integrity constraints are guaranteed, which has an impact on the desirable properties 
of operation contracts. A strict interpretation assumes passive behavior of operations, 
since it prevents an operation from being applied if an integrity constraint is violated 
(although both its preconditions and postconditions are satisfied). In contrast, an 
extended interpretation entails reactive behavior of operations, since it must ensure 
that integrity constraints are satisfied whenever they are violated, so that the operation 
will always be applied if its precondition is satisfied. 

Previous proposals that consider the relationship between operation contracts and 
integrity constraints have assumed an extended interpretation [4, 13, 15]. As we will 
see, however, this interpretation involves several drawbacks regarding recommended 
good practice for requirements specification [1]. To overcome these limitations, we 
propose the strict interpretation as an alternative means of defining the semantics of 
operation contracts in conceptual modeling. 

Both interpretations are formalized and then illustrated and compared using several 
examples. Our results indicate that the strict interpretation provides several 
advantages over the extended one. This is confirmed through the use of a case study, 
which also reveals that the strict interpretation significantly facilitates the 
specification task.  

There are three main contributions made by this study. Firstly, we clearly state the 
relationship between integrity constraints and operation postconditions, an issue that 
has not been fully elucidated in conceptual modeling. Secondly, we highlight the 
main drawbacks of the classical, extended interpretation used to date with operation 
contracts. Finally, we propose the strict interpretation as an alternative to define the 
semantics of operation contracts and we show that it provides several advantages over 
the extended interpretation in the case of conceptual modeling. 

Since the work presented here is independent of any specific conceptual modeling 
language, the results can be applied to any such language, provided that it allows the 
definition of operations and integrity constraints. In addition, the results can be 
applied to almost all current conceptual modeling approaches [4, 10, 11, 13, 15, 17]. 

The ideas developed in this paper were initially outlined in [18], where we 
sketched the two possible semantics of operation contracts. However, the work 
presented here extends our previous work in several directions. Firstly, we give the 
formal definitions for each of the interpretations. Secondly, we provide illustrative 
examples that focus on their main relevant features. Thirdly, we compare both 
interpretations regarding the relevant characteristics of good software specification. 
Finally, we provide experimental results in support of our conclusions. 

The next section reviews related work. Section 3 presents basic concepts and an 
example used throughout the paper. Section 4 defines the strict and extended 
interpretations, while Section 5 compares them. In Section 6 we provide some 
experimental results, and finally, we present our conclusions and consider future work 
in Section 7. 
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2 Related Work 

Previous work on conceptual modeling has provided precise definitions for integrity 
constraints and definitions for preconditions and postconditions, but sometimes 
without explicitly establishing a clear relationship between them. Thus, little attention 
has generally been paid to the precise semantics of operation contracts, in terms of 
how the satisfaction of integrity constraints is guaranteed after each operation is 
executed. 

In many proposals, integrity constraints are kept separated from the discussion of 
operation contracts when, in fact, they determine the way contracts are specified. In 
some studies, definitions are given for integrity constraints and for preconditions and 
postconditions, but the implications that constraints have on the way operation 
contracts are specified is not really discussed [11, 17, 20, 22]. In one chapter, it is 
even stated explicitly that integrity constraints are not included in the discussion of 
preconditions and postconditions for the sake of simplicity [10]. All of these 
approaches make clear that integrity constraints must hold before and after every 
operation execution. However, they do not define whether the operation must 
guarantee consistency by repairing the information base or by rejecting the operation 
when a violation occurs. 

In contrast, the relationship between operation contracts and integrity constraints is 
clearly established by some authors [4, 13, 15]. According to them, the state of the 
information base generated by the execution of an operation must satisfy both the 
postcondition and the integrity constraints every time the precondition is satisfied. 
This means that each operation is responsible for recovering the consistency of the 
information base when this is lost during execution of the operation. As we will see, 
this semantics corresponds to our extended interpretation of operation contracts, and 
as we will discuss, involves several drawbacks from the point of view of the 
characteristics of good software specification. 

Finally, this relationship has been disputed when it deals with the specification of 
business rules [6]. In that analysis, the authors concluded that preconditions, 
postconditions and invariants should not be offered as concepts in object-oriented 
analysis and, thus, two new special kinds of constraints (class and event constraints) 
must be introduced to model business rules. In this paper, we show that a strict 
interpretation of operation contracts allows successful use of preconditions, 
postconditions and invariants in conceptual modeling, without the need for 
consideration of new concepts. 

Since we study how integrity constraints affect operation contracts, the previous 
discussion does not concern proposals that do not allow the explicit definition of 
integrity constraints in the conceptual schema, like Taxis [14]. 

3 Basic Concepts 

The conceptual schema of an information system must include all relevant static and 
dynamic aspects of its domain [9]. The part of a conceptual schema that deals with 
static aspects is called the structural schema and the part that deals with dynamic 
aspects is called the behavioral schema. 
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The structural schema consists of a taxonomy of entity types together with their 
attributes, a taxonomy of relationship types among entity types, and a set of integrity 
constraints. An information system maintains a representation of the state of a domain 
in its information base. The state of the information base is the set of instances of the 
entity types and relationship types defined in the structural schema. The integrity 
constraints define conditions that each state of the information base must satisfy. 
Those constraints can have a graphical representation or can be defined through a 
particular language. 

The behavioral schema contains a set of operations. The effect of each operation 
on the information base is specified by an operation contract. An operation contract is 
defined by a precondition, which expresses a condition that must be satisfied when 
the call to the operation is made, and a postcondition, which expresses a condition 
that the new state of the information base must satisfy. The content of the information 
base changes as a result of the execution of the operations specified in the behavioral 
schema. Changes in the state of the information base are defined by a set of one or 
more structural events to be applied that are drawn from the preconditions and 
postconditions of the operation contracts. 

A structural event is an elementary change in the population of an entity type or a 
relationship type, i.e. the creation, deletion or modification of instances of a given 
type. The precise number and meaning of structural events depend on the conceptual 
modeling language used. In this paper, we assume the following kinds of structural 
events1: 

- Entity insertion: creates a new instance of an entity type 
insert(EntityType(attribute1,...,attributen)) 

- Entity deletion: deletes an instance of an entity type 
delete(EntityType(instance)) 

- Entity generalization: an instance is moved from an entity type to its 
supertypes  

generalize(instance, EntityType) 
- Entity specialization: an instance is moved from an entity type to one of its 

subtypes 
specialize(instance, EntityType(attribute1,...,attributen)) 

- Relationship insertion: links a set of instances of entity types. When the 
relationship type is an association class, values for its attributes must be 
indicated 

newLink(RelationshipType(participant1,...,participantn, [attr1,...,attrn])). 
- Relationship deletion: deletes a link between a set of instances 

deleteLink(RelationshipType (participant1,...,participantn) 
- Attribute update: changes the value of an attribute 

update(EntityType(attribute, value)) 

The application of a set of structural events to a state IB of the information base 
results in a new state IB’. Given a state of the information base IB, there are several 

1 More complex events can be expressed in terms of these ones. For instance, an entity 
migration can be specified as an entity generalization and an entity specialization. 

sets of structural events that lead to new states satisfying an operation postcondition. 
Of these, we are only interested in the minimal ones. A set S of structural events is 
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minimal if no proper subset of S is also a set of structural events that satisfies the 
postcondition. This is the way in which we deal with the frame problem [2]. 

As we will see, the particular semantics given to an operation contract determines 
the set of structural events to be applied to the information base when the operation is 
executed. 

Throughout this paper we will consider an example based on the internet auctions 
domain. In an auction site, items are owned by users and may be auctioned for a 
certain period of time during which the auction is open. Users registered on the site 
can place several bids for an auctioned item as long as the auction is not closed. The 
amount of a new bid must be greater than any other bid placed so far. Moreover, 
several operations can be performed in such a domain. The following are examples of 
such operations: newUser, to register new users; unregisterUser, to unregister users; 
and bid, which allows users to place a bid for a certain item at a certain time. 

 

Textual integrity constraints  
- Users are identified by e-mail 

context User inv emailIsUnique:  
User.allInstances()->isUnique(e-mail) 

- Items are identified by code 
context Item inv codeIsUnique:  
Item.allInstances()->isUnique(code) 

- An item may not have more than one auction open simultaneously 
context Item inv oneOpenAuction: 
self.auction->select(a.oclIsTypeOf(OpenAuction))-> size()<=1 

- The amount of a bid must be greater than any previous bid in the same auction 
context Bid inv amountAbovePreviousBids:  
self.auction.bid->select(time.instant < self.time.instant)-> 

forall(amount < self.amount) 

Fig. 1. Structural schema for internet auctions 
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We will provide a textual description and an OCL formalization of some relevant 
operation contracts in the next section when discussing the different semantics 
considered in this paper. 

4  Semantics of Operation Contracts 

Each operation contract in the behavioral schema is defined by a precondition and a 
postcondition. An operation precondition expresses the requirements that any call to 
the operation must satisfy in order to be correct, while its postcondition expresses 
properties that are ensured in return by the execution of the call [12]. 

In addition to preconditions and postconditions, integrity constraints play an 
important role in the definition of the semantics of operation contracts. Every 
operation can assume that the integrity constraints are true when it is entered and must 
in return ensure that they are true on its completion [8]. The semantics of operation 
contracts in conceptual modeling identified in this paper mainly differ in terms of the 
way in which integrity constraints are considered. 

Given an information base IB and an operation Op2, the semantics of Op defines 
the conditions under which Op can be applied and the new IB’ obtained as a result of 
applying Op to IB.  

In this section we analyze the traditional semantics of operation contracts, which 
we call extended interpretation, and demonstrate that it has important drawbacks in 
terms of the desirable properties of software specifications. To solve these problems 
we propose a different way of specifying contracts, called strict interpretation. 

4.1  Extended Interpretation of Operation Contracts 

An operation contract states that if the conditions specified in the precondition are 
satisfied, then the state described in the postcondition is guaranteed, together with the 
integrity constraints specified in the schema [12]. In other words, satisfaction of the 
precondition always implies satisfaction of the postcondition and the integrity 
constraints. We will call this extended interpretation, since integrity constraints are 
considered as clauses implicitly added to the postcondition, i.e. it is the responsibility 
of the operation to ensure satisfaction not only of the postcondition but also of the 
integrity constraints of the schema. 

Let IB and IB’ be states of the information base. Let Op(IB, IB’) denote that IB’ is 
the result of applying an operation Op on IB. Let Pre and Post be the precondition and 
postcondition of Op respectively. Let IB’ = S(IB) denote that IB’ is obtained as a 
result of applying all the structural events in S to IB. Let S, S2 and S3 be sets of  

2  Since there is a one to one correspondence between each operation and the operation contract 
specifying its behavior, we will use the two terms interchangeably. 
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The behavioral schema of the previous example is not shown here because the 
formalization of its operation contracts depends on the particular semantics assumed. 

necessary textual integrity constraints are first defined and then formalized in OCL 
[16, 21].  

The structural UML schema of our working example is shown in Figure 1. The 



a) IB  Pre ∧ IC 
b) IB’ = S2(IB) and S ⊆  S2 
c) IB’  Post ∧ IC 
d) ¬∃ S3, S ⊆  S3 ⊂  S2 such that S3(IB)  Post ∧ IC 

Intuitively, the first condition states that the transition is only possible if IB 
satisfies Pre and it is consistent. The second condition asserts that to obtain IB’ at 
least the structural events in S must be applied. However, it does not rule out the 
application of additional structural events to IB. The third condition requires IB’ to 
satisfy Post and to be consistent. Finally, the fourth condition states a minimality 
condition on S2 in the sense that there is no proper subset of S2 that satisfies Post and 
IC. 

An extended interpretation allows for several different sets of structural events Si to 
be applied to IB, provided that all of them include at least the events in S and satisfy 
the minimality condition. The additional structural events in Si must be such that they 
guarantee that no constraint is violated in the resulting state, even though some of 
them were violated by the events in S. Clearly, if S itself does not violate any 
constraint there is no need to consider additional structural events. 

We will use the operation newUser, aimed at registering new users in our internet 
auctions domain, to illustrate that the previous definition formalizes the traditional 
meaning of a contract. The contract shown in Figure 2 specifies this operation. 

Operation: newUser(email: String, creditCard: String) 
Pre: --there is no user with e-mail=email 

not User.allInstances() → exists(u⏐u.e-mail=email) 
Post: --a new instance u of Registered, identified by  

--email and with credit card=creditCard is created 

u.oclIsNew() and u.oclIsTypeOf(Registered) and  
u.e-mail = email and u.credit-card = creditCard 

Fig. 2. Contract for the operation newUser 

Here, S={insert(Registered(email,creditCard))} is sufficient to satisfy the 
postcondition of newUser(email,creditCard), since it is the only structural event that 
causes IB' to satisfy the postcondition. 

We will now show the conditions under which newUser can be applied to IB and 
the new IB’ arising from the application of newUser according to the extended 
semantics. Two different situations must be distinguished, depending on the contents 
of IB:  

 
3 Exceptionally, several minimal sets S can exist but only in those cases in which some kind of 

random behavior is desired. In that case, any of them can be arbitrarily chosen. 
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structural events and S be the minimal set that satisfies Post when applied to IB3. Let 
IC be the set of integrity constraints defined in the conceptual schema.  

Definition 1: Extended Interpretation of an Operation Op 
∀ IB, IB’ such that Op(IB, IB’), the following four conditions hold: 



that a user with the same email does not already exist, no integrity 
constraint can be violated by the application of S, so S = S2 in this case. 

− Condition d) is also satisfied, since there is no subset of S2 = 
{insert(Registered(email,creditCard))} satisfying Post. 

2. IB contains a user identified by email. In this case, the operation will not be 
executed, since its precondition is not satisfied and condition a) of Definition 1 
does not hold. 

In summary, according to an extended interpretation the semantics of the operation 
newUser is such that if IB does not contain any user identified by email then the 
operation leads to the insertion of a new registered user, with the specified e-mail and 
credit card. Otherwise, the operation will not be applied and IB will remain 
unchanged. 

However, we see an important drawback in the previous operation contract. The 
problem is that its precondition is redundant, since the same aspect of the specified 
system (two users with the same e-mail cannot exist) is already guaranteed by the 
emailIsUnique constraint. Non-redundant conceptual schemas provide several 
advantages regarding desirable properties of software specifications and ease of 
design and implementation, such as conciseness, modifiability and consistency [3]. 

To avoid redundancy in the specification of the operation newUser we should 
define an operation contract like the one shown in Figure 2 but with an empty 
precondition, as shown in Figure 3. 

Operation: newUser(email: String, creditCard: String) 
Pre:   
Post: --a new instance u of Registered, identified by  

--email and with credit card=creditCard is created 

u.oclIsNew() and u.oclIsTypeOf(Registered) and  
u.e-mail = email and u.credit card = creditCard 

Fig. 3. Non-redundant contract for operation newUser 

Assuming an extended interpretation of the previous operation contract, we obtain 
the following behavior. Since the postcondition has not changed, the set S will be the 
same as before, S={insert(Registered(email,creditCard))}. We distinguish the same 
two relevant situations depending on the contents of IB. 

1. IB does not contain any user identified by email. In this case the behavior is 
the same as in the contract shown in Figure 2. Hence, IB’ is obtained by 
inserting a registered user with email and creditCard into IB. 
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1. IB does not contain any user identified by email. In this case: 
− Condition a) is guaranteed, since Pre is satisfied and IB is consistent. 
− b) states that IB’ = S2(IB) and S ⊆  S2, i.e. any information base resulting 

from applying a set S2 of structural events that contains 
S={insert(Registered(email,creditCard))} will satisfy this condition. 

− c) states that IB’ must imply both the postcondition (this is always true 
since it is satisfied by S) and all integrity constraints. Under the assumption 



In summary, according to the semantics of the non-redundant operation contract 
for newUser based on an extended interpretation, if IB does not contain a user 
identified by email the operation results in the application of the structural event 
insert(Registered(email,creditCard)). Otherwise, if IB contains a user user identified 
by email, it results in the application of S2 = S ∪ {delete(User(user))}, in order to 
satisfy the postcondition and repair the violation. Clearly, this is not the intended 
behavior of this operation. If a user with the same e-mail already exists the operation 
should not be applied and the only way to specify this according to the extended 
semantics of contracts is by repeating this information in the precondition.  

Avoiding redundancy in an extended interpretation may also lead to other 
inconveniences. These are illustrated using the following contract for the operation 
bid, aimed at allowing users to place bids in our internet auctions domain:  

Operation: bid(u:Registered, a:OpenAuction, amt:Money) 
Pre:  
Post: --a new instance b of Bid, with amount amt and  

--defined by the user u, the auction a and the  
--current time is created 

b.oclIsNew() and b.oclIsTypeOf(Bid) and b.bidder = u 
and b.auction=a and b.amount=amt and b.time=now() 

Fig. 4. Contract for the operation bid 

We distinguish two relevant situations: 
1. amt is greater than the amount of all the previous bids of a. In this case, the 

operation results in the application of S={newLink(Bid(u,a,now,amt))}, the 
minimal set of structural events that satisfies Post, since it does not violate any 
constraint. 

2. amt is not greater than all previous bids. Now, the application of S alone 
would result in the violation of the constraint amountAbovePreviousBids. To 
avoid this violation, additional structural events should be taken into account. 
In particular, they should repair the violation by either decreasing or 
eliminating previous bids. 

According to this, the previous operation contract admits two different sets of 
structural events to be applied to IB. In addition to the events in S, one of them 
contains structural events to decrease the amount of previous bids, while the other 
contains the deletion of previous bids (note that both of them satisfy both Post and 
IC). Clearly, both alternatives correspond to completely different business rules and 
random behavior of this operation is not acceptable. 
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2. IB contains a user user identified by email: 
− a) is guaranteed. 
− b) states that any IB’ resulting from applying a set S2 , S ⊆ S2, of structural 

events that contains S will satisfy this condition. 
− c) states that IB’ must imply both the postcondition and all integrity 

constraints. Since S itself violates the first integrity constraint, S2 must be a 
superset of S.  

− d) states that S2 must be minimal. Adding delete(User(user)) to S is 
sufficient both to satisfy this condition and repair the previous violation. 



Operation: bid(u:Registered, a:OpenAuction, amt:Money) 
Pre: --the amount amt is above the amount of all previous 

--bids for the same auction 

a.bid-> forall(amount < amt) 
Post: --a new instance b of Bid, with amount amt and  

--defined by the user u, the auction a and the  
--current time is created 

b.oclIsNew() and b.oclIsTypeOf(Bid) and b.bidder=u 
and b.auction=a and b.time=now() and b.amount=amt 

Fig. 5. A redundant contract for the operation bid 

The problem is that this way of avoiding ambiguity results in a redundant operation 
precondition. As mentioned, despite being acceptable, this situation would not follow 
suggested good practices for conceptual modeling [3]. 

In contrast, if the designer wants the operation to recover the consistency of the 
information base, the solution to avoid ambiguity is to explicitly state how to repair 
integrity constraint violations in the operation postcondition, as is necessary in a strict 
interpretation. This could be done in the previous example by choosing one of the two 
possible ways to repair the constraint violation (i.e. either to decrease the amount of 
previous bids or to delete them) and specifying the corresponding OCL expression in 
the operation postcondition. 

It can therefore be concluded that assuming the extended interpretation forces 
redundancy of operation contracts. 

4.2 Strict Interpretation of Operation Contracts 

To solve the problem of redundancy caused by the extended interpretation, we 
propose an alternative way to understand operation contracts. This interpretation 
prevents the application of the operation when an integrity constraint is violated 
during execution. We call this approach strict interpretation, since the operation 
needs only be responsible for satisfying the postcondition and does not address the 
integrity constraints. This approach is formalized in Definition 2. 

Let IB and IB’ be states of the information base. Let Op(IB, IB’) denote that IB’ is 
the result of applying an operation Op on IB. Let Pre and Post be the precondition and 
postcondition of Op, respectively. Let IB’ = S(IB) denote that IB’ is obtained as a 
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This is a clear example of how assuming an extended interpretation may lead to 
ambiguous contracts. The problem is that, as stated in the IEEE Recommended 
Practice for Software Requirements Specifications (SRS) [1], a good SRS must be 
unambiguous in the sense that each requirement, and in particular the ones stated in 
the operation contracts, must have a unique meaning. 

There are two possible ways to avoid ambiguity that depend on the expected 
behavior of the operation. One possibility is to strengthen the operation precondition 
to ensure that no integrity constraint violation will be produced, in case the designer 
wants the operation to be rejected if there is a constraint violation. In the previous 
example this would be done through the following contract:  



Moreover, according to the second condition, IB’ is obtained exactly as a result of 
applying the minimal set S of structural events that satisfies Post to IB. Finally, the 
third condition requires IB’ to satisfy Post (always true according to b)) and to be 
consistent. If any of the conditions do not hold, Op is not applied to IB. 

Notice that the resulting state will always be consistent, since integrity constraints 
were satisfied before the operation and they will always be satisfied at the end. If the 
execution of the operation does not violate any of the integrity constraints, then they 
are already guaranteed. On the other hand, if the execution violates any of them, the 
operation is rejected and the state remains unchanged. 

An example is provided by the conditions under which the non-redundant contract 
of newUser¸ as specified in Figure 3, can be applied to IB and the new IB’ resulting 
from its execution according to the strict interpretation. Recall that 
S={insert(Registered(email,creditCard))} is the minimal set of structural events that 
satisfies the postcondition. We distinguish the same two situations as before 
depending on the contents of IB: 

1. IB does not contain any user identified by email: 
− a) is guaranteed. 
− b) states that IB’ = S(IB). 
− IB’, as obtained according to b), satisfies c) since S necessarily satisfies the 

postcondition and applying S to IB never violates any integrity constraint. 
2. IB contains a user identified by email: 

− a) is guaranteed. 
− b) states that IB’ = S(IB), i.e. IB’ is obtained by inserting a registered user 

with email and creditCard into IB 
− c) is not satisfied since IB’ will always violate the first integrity constraint.  
Thus, newUser may not be applied in such an IB since it is impossible to 
satisfy all conditions required by a strict interpretation. 

In summary, according to a strict interpretation the semantics of the operation 
newUser is such that if IB does not contain any user identified by email then the 
operation results in the application of the structural event 
insert(Registered(email,creditCard)). Otherwise, the operation may not be applied 
since it leads to the violation of an integrity constraint. Clearly, this is the intended 
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result of applying all the structural events in S to IB. Let S be the minimal set of 
structural events that satisfies Post when applied to IB. Let IC be the set of integrity 
constraints defined in the conceptual schema.  

Definition 2: Strict Interpretation of an Operation Op 
∀ IB, IB’ such that Op(IB, IB’), the following three conditions hold:  

a) IB  Pre ∧ IC 
b) IB’ = S(IB) 
c) IB’  Post ∧ IC 

As in Definition 1, the first condition states that there is a transition from an 
information base IB to an information base IB’ as a result of applying an operation Op 
only if IB satisfies Pre and it is consistent (i.e. it satisfies all integrity constraints ). 



4.3  More on the Strict and Extended Interpretations 

As we have just seen, the strict interpretation solves the problem of redundancy in 
contracts in those cases in which the intended behavior of an operation is to avoid 
execution if it is about to violate an integrity constraint. However, in some specific 
situations, the designer's intention is not to reject the operation but to apply it while 
still maintaining the consistency of the information base. In those cases, an extended 
interpretation may be better. The next example is useful to illustrate this situation.  

If we want to define an operation unregisterUser aimed at unregistering users, we 
can specify the following operation contract: 

 
Operation: unregisterUser(u:Registered) 
Pre:  
Post: --user u becomes an instance of Unregistered in the 

--current time and ceases to be an instance of  
--Registered 

u.oclIsTypeOf(Unregistered) and 
u.oclAsType(Unregistered).date = now() and  
not u.oclIsTypeOf(Registered) 

Fig. 6. Contract for the operation unregisterUser 

According to a strict interpretation, the minimal set of structural events that 
satisfies Post is S={specialize(u, Unregistered(now)), generalize(u, Registered)}. 
Then, according to Definition 2, IB' is obtained from IB by inserting u as an instance 
of Unregistered and removing it from Registered. Note that this operation always 
results in a state IB' that satisfies both the postcondition and the integrity constraints.  

Clearly, the previous semantics is the one expected for the operation 
unregisterUser. However, the postcondition of the contract explicitly states that u 
must no longer be a registered user. Moreover, the class diagram already includes the 
condition that if u is Unregistered (as also enforced by the contract postcondition) it 
may not be Registered (because of the disjointness constraint). Thus, we could argue 
that the same behavior would be achieved by removing “not 
u.oclIsTypeOf(Registered)” from Post, as shown in Figure 7. 
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behavior of this operation and it has been obtained without the need to specify a 
redundant precondition. 

The desired effect of the non-redundant contract for the operation bid (see Figure 
4) is also obtained when we assume a strict interpretation. The minimal set of 
structural events that satisfies Post is S={newLink (Bid(u,a,currentTime,amt))}. So, 
according to a strict interpretation, the semantics of bid is such that if amt is greater 
than the amount of all the previous bids of a, then the operation results in the 
application of the structural event newLink(Bid(u,a,currentTime,amt)). Otherwise, the 
operation cannot be applied since it would violate the constraint 
amountAbovePreviousBids. This interpretation corresponds to the expected semantics 
of an operation bid. 



constraint is violated will be sufficient to detect that this change is also required 
without the need to state it explicitly. 

Thus, according to Definition 1, the semantics of the contract in Figure 7 when an 
extended interpretation is assumed is as follows:  

− a) is guaranteed. 
− b) states that IB’ = S2(IB) and S ⊆  S2, S={specialize(u, Unregistered(now))}.  
− Note that the application of S alone would violate the disjointness constraint of 

the User specialization. Then, according to c), S2 must be a superset of S.  
− The minimal superset of S that satisfies both Post and IC is S2 = S ∪ 

{generalize(u, Registered)}.  

Thus, the previous contract always requires the application of two structural 
events: {specialize(u, Unregistered(now)), generalize(u, Registered)}. However, only 
one of them is explicitly stated in the postcondition. 

The previous example shows that there are some specific situations in which an 
extended interpretation is not ambiguous without the need to specify additional 
information in the operation contracts. In this example, a disjointness constraint is 
violated, and since the only possible way to repair it is by deleting u as a registered 
user, no ambiguity exists at all. In general, the extended interpretation of an operation 
contract will not be ambiguous when all integrity constraints that are violated by 
execution of the operation only allow for a single repair. 

4.4 Summarizing Strict and Extended Interpretations 

The main differences between strict and extended interpretations lie in the way 
integrity constraints are enforced. When there is no violation of integrity constraints, 
the semantics of a given operation contract is equivalent in both interpretations. In 
this case, the new state of the information base is always obtained by applying the 
minimal set S of structural events that satisfy the operation postcondition. However, if 
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The problem is that if we do that a strict interpretation of the contract would never 
allow the operation unregisterUser to be applied, since the information base resulting 
from inserting u as an unregistered user (the minimal set of structural events that 
would now satisfy the postcondition) would always violate the disjointness constraint. 
Hence, a strict interpretation requires “not u.oclIsTypeOf(Registered)” to be stated in 
the operation postcondition.  

An extended interpretation does not involve the same drawback since we do not 
need to specify in the postcondition of unregisterUser that u is no longer registered. 
The reason is that the reactive behavior of an extended interpretation when a 

Operation: unregisterUser(u:Registered) 
Pre:  
Post: --user u now becomes an instance of Unregistered 

u.oclIsTypeOf(Unregistered) and 
u.oclAsType(Unregistered).date = now() 

Fig. 7. Contract for the operation unregisterUser 



does not violate the constraints. An example of this situation can be found in the 
contract for the operation bid specified in Figure 5. 

We summarize in Table 1 how (in addition to the intended behavior of the 
operation) the treatment of integrity constraints should be specified in a contract, 
depending on both the interpretation chosen and whether we want the operation to be 
rejected or applied when the events in S violate an integrity constraint.  

Table 1. Avoiding violation of integrity constraints 

 Reject the operation Apply the operation 

Strict Nothing else needs to be done Specify how to satisfy the constraints in Post 

Extended Add redundant checks to Pre Specify how to satisfy the constraints in Post 
(if the contract is ambiguous) 

5 Discussion 

We have compared strict and extended interpretations from the point of view of the 
relevant characteristics of a good software requirements specification (SRS) [1, 5]. As 
recommended there, we assumed an unambiguous operation contract specification.  In 
general, this is always true in a strict interpretation, since deterministic behavior  is 
usually desired. Regarding the extended interpretation, in this section we will 
concentrate on those situations in which non-ambiguity is achieved by strengthening 
either the operation pre- or postcondition, since this is the most frequent case in 
practice. 
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On the other hand, under an extended interpretation, the operation may be applied 
even though some constraint is violated by S, and the new state of the information 
base is obtained by applying a set of structural events S’, a superset of S, that 
guarantees that no constraint is violated. Note that S’ is unique as long as there is a 
single way to guarantee the constraints, as shown in Section 4.3 with a disjointness 
constraint violation. If S’ is not unique the operation contract is ambiguous. To  avoid 
ambiguities, we must specify the way to preserve consistency in the postcondition (as 
must be made in a strict interpretation).  

Alternatively, if we want to maintain consistency by rejecting the operation, its 
precondition must include redundant checks to ensure that execution of the operation 

the violation of a constraint occurs when the structural events in S are applied, the 
semantics of the contract depends on the chosen interpretation. 

On the one hand, under a strict interpretation the violation of a constraint means 
that the operation is not applied and, thus, the information base remains unchanged. 
Consequently, no redundant checks are needed in the precondition. A strict 
interpretation of the contract of bid in Figure 4 serves as an example of this situation. 
Alternatively, if we do not want the operation to be rejected, its postcondi tion must 
explicitly state how to satisfy the constraints after execution of the operation. This can 
be seen in the contract for unregisterUser in Figure 6. 



5.2 Consistency 

An SRS is consistent if, and only if, no conflict occurs between subsets of  individual 
requirements described within it. 

Although neither of the approaches leads directly to an inconsistent specification, a 
strict interpretation facilitates having a consistent one while an extended interpretation 
is more prone to the specification of conflicting requirements. The reason is that, 
since integrity constraints are sometimes specified both in the structural schema and 
as preconditions of operations in the behavioral schema, they can be in contradiction 
and, therefore, lead to an inconsistent specification. 

For instance, it will be more difficult to keep the specification of bid consistent 
with the operation contract specified in Figure 5 than with the one specified in Figure 
4. The reason is that we could easily have specified in the precondition of the first 
contract that the amount of a bid must be greater than or equal to the amount of the 
previous bids for the same auction. This would be clearly inconsistent with the 
integrity constraint amountAbovePreviousBids, which forces a bid to be higher than 
the previous ones. 

5.3 Verifiability 

An SRS is verifiable if, and only if, every requirement stated therein is verifiable. A 
requirement is verifiable if, and only if, there exists some finite cost-effective process 
with which a person or machine can check that the software product meets the 
requirement. 

Unlike the previous criterion, verifiability is more easily achieved with an extended 
interpretation. Although both approaches allow the verification of the software 
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For instance, understanding the operation bid (see Figure 5) from the point of view 
of an extended interpretation, we always obtain a defined result when the precondition 
is satisfied, which is exactly the one specified in the postcondition (a new bid is 
created and linked to the user and auction specified as parameters and the current 
time) plus the additional changes, if any, required to satisfy all integrity constraints. 

Understanding bid from the point of view of a strict interpretation (see Figure 4), 
we have two kinds of results when the precondition holds. In those cases in which  no 
integrity constraint is violated, the resulting state of the information base is the one 
specified in the postcondition, as occurs with an extended interpretation. On the  other 
hand, when an integrity constraint is violated, bid is rejected and the information base 
remains unchanged. 

5.1 Completeness 

An SRS is complete if it includes the definition of the responses of the software to all 
possible classes of input data in all possible classes of situations. From this point of 
view, both approaches can be considered complete. An extended interpretation avoids 
erroneous execution of an operation by means of its precondition, while a strict  one 
assumes that the response to undesired situations is the rejection of the changes made 
by the operation. Moreover, when the precondition is not satisfied, both approaches 
act in the same way, by rejecting the operation. 



condition in order to be consistent, and ensure that the same is done in every contract 
affected by the change. However, with a strict interpretation, we do not need to make 
any additional changes, since requirements stated by integrity constraints are only 
stated in the structural schema. 

Much less frequently, we find a similar drawback when the postcondition  already 
specifies how to maintain a certain integrity constraint. This drawback is shared by 
both approaches. On the one hand, a strict interpretation always needs to specify  this 
reactive behavior in the postcondition, while on the other, an extended interpretation 
requires doing the same to guarantee that there is only one possible reaction to the 
violation of each integrity constraint. 

5.5 Conciseness 

Given two SRS for the same system, each exhibiting identical levels of all the 
qualities mentioned previously, the SRS that is shorter is also better. 

Taking conciseness into account, it is clear that the strict interpretation approach 
helps to obtain shorter specifications, since each integrity constraint is specified in 
exactly one place. This can easily be seen by comparing the contracts in Figures 4  and 
5. It is clear that both of them have the same meaning, while the one in Figure 4,  in 
addition to being correct under a strict interpretation, is shorter. 

5.6 Summary 

The following table summarizes the discussion in this section. Rows correspond to 
desirable properties of a good software requirements specification, while columns 
refer to the interpretations we have defined in this paper. The symbol  in a cell 

to modify the precondition of the operation bid (see Figure 5) stating again the same 
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5.4 Modifiability 

An SRS is modifiable if, and only if, its structure and style are such that any  changes 
to the requirements can be made easily, completely, and consistently. Modifiability 
generally requires that an SRS is not redundant. 

In the case of modifiability, an extended interpretation is again more prone to 
errors due to the necessary duplication of integrity constraints in the preconditions. 
When changing a requirement, it is easy to forget to change it in every precondition  in 
which it appears, and this can lead both to inconsistencies and to wasting more time. 

Suppose that a requirement changes and we want to enforce that a bid may only be 
placed if it is 5 % higher than the highest previous bid for the same auction. In this 
case, the integrity constraint amountAbovePreviousBids must be changed in order to 
express this requirement. Moreover, with an extended interpretation we will also have 

product, this process can become more complicated when a strict interpretation is 
assumed due to the dispersion of the requirements that affect an operation. 

For example, to verify the correct behavior of the operation bid as defined in 
Figure 4, we must also take into account the integrity constraint 
amountAbovePreviousBids. However, taking the contract in Figure 5, no  additional 
information is needed in order to verify it. 



6  Case Studies 

We have applied the ideas discussed in this paper to the specification of two real-life 
applications, far beyond the simple examples used so far. In particular, we have 
developed a conceptual schema for the EU-Rent Car Rentals system [7], a widely 
known case study promoted as a basis for demonstration of product capabilities,  and 
we have also specified a generic conceptual schema for the e-marketplace domain 
[19] 

EU-Rent is a company with branches in several countries that provides typical car 
rental services. The conceptual schema we have developed assumes a strict 
interpretation of operation contracts and consists of 59 entity types, 50 relationship 
types, 38 integrity constraints and 81 non-query operations. An analysis of the EU-
Rent conceptual schema highlights the advantages of assuming a strict interpretation 
of operation contracts. The results of the analysis are summarized in this section.  

Almost all of the integrity constraints in this case study (36 out of 38) require that 
the related operations must be rejected when they are violated. Assuming a strict 
interpretation, these constraints need not be taken into account when specifying 
operation preconditions, since this interpretation already provides the desired 
behavior. In contrast, with an extended interpretation, redundant addi tional 
preconditions should be included in 79 of the 81 operations of the conceptual schema 
to ensure that they are successfully executed. 

Only two integrity constraints require that the related operations perform some 
kind of maintenance instead of rejecting the changes. Assuming a strict interpretation, 
only 2 of the 81 operations require doing the maintenance of those constraints 
explicitly in the postcondition, while an extended interpretation does not  entail any 
change in the operation contracts. 

The previous results show that 97.5% of the operations benefited from the strict 
interpretation, while only 2.5% did not. If we had assumed an extended interpretation, 
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Table 2. Comparison of the approaches 

 Extended interpretation Strict interpretation 
Completeness   
Consistency   
Verifiability   
Modifiability   
Conciseness   

denotes the appropriateness of the corresponding interpretation to achieve the 
property. 

As we can see, completeness is achieved in both interpretations, while consistency, 
modifiability and conciseness are easier to achieve in a strict interpretation, and 
verifiability in an extended one. For this reason, we can conclude that in general terms 
a strict interpretation of operation contracts provides several advantages over  an 
extended one in conceptual modeling. 



Below, we show a small part of the EU-Rent conceptual schema (14 entity types 
and 18 constraints) to further illustrate the conclusions regarding the semantics of 
operation contracts that we have drawn from the development of this case study.  

 

Fig. 8. EU-Rent class diagram 
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include several additional preconditions to verify the corresponding integrity 
constraints. In our case study, the number of additional preconditions lies between 1 
and 10. 

As a result of this analysis, we can conclude that assuming a strict interpretation 
leads in practice to a significant reduction of the time and complexity required to 
specify the conceptual schema of EU-Rent. The resulting schema is also much more 
concise, consistent and modifiable than if specified assuming an extended 
interpretation. The main reason is that a strict interpretation allows redundancy 
between integrity constraints and operation contracts to be avoided, thereby resulting 
in a simpler EU-Rent conceptual schema. 

the result would have been exactly the opposite: only the 2.5% of the operations 
would have benefited from the choice. 

Additionally, in a strict interpretation there is a direct one-to-one correspondence 
between the two operation contracts that require additional postconditions and the  two 
integrity constraints that motivate them. In contrast, with an extended interpretation, 
each integrity constraint generally involves the modification of several operation 
contracts. In fact, 53% of the constraints require several operation contracts to be 
modified, while the maximum number of contracts that must be modified because of  a 
single integrity constraint is 8. Moreover, each modified operation contract can 



assuming a strict interpretation. The user indicates the identification of the  renter 
(renterId), the desired beginning and end dates of the rental (beginning and ending), 

Operation: MakeReservation(renterId: String, beginning: DateTime, end: 
DateTime, pickUp: String, dropOff: String, countries: 
Set(String), carGroup: String, carModel: String) 

Pre: --1. there are cars available 
let pickUpBranch: Branch = Branch.allInstances()-> select(b 
| b.name = pickUp) in 
pickUpBranch.car -> select(c| c.carGroup = carGroup) -> 
reject(c | c.rentalAgreement.oclAsType(Reservation)-> 
exists(r | r.agreedEnd > beginning and r.agreedEnd < end and 
not r.oclIsTypeOf(CanceledReservation))-> 
union(Car.allInstances()-> select(c | c.carGroup = carGroup 
and c.rentalAgreement->exists(r | r.agreedEnd < beginning 
and r.dropOffBranch = pickUpBranch) ->notEmpty() 

Post: --a new reservation is created with the information provided 
res.oclIsNew() and res.oclIsTypeOf(Reservation) and 
res.renter.id = renterId and 
res.beginning.date = beginning and  
res.initEnd = end and 
res.pickUpBranch.name = pickUp and 
res.dropOffBranch.name = dropOff and 
res.country.name = countries and 
not carGroup.oclIsUndefined() implies 
res.requestedGroup.name = carGroup and 
not carModel.oclIsUndefined() implies 
res.requestedModel.name = carModel and 
res.reservationDate = currentTime() 

Fig. 9. Contract for MakeReservation, specified assuming a strict interpretation 

Specifying the Semantics of Operation Contracts 51 

- The countries visited within a rental include the pick-up and drop-off countries 
- Drivers and renters must be older than 25 
- Blacklisted individual cannot participate in a rental 
- A customer cannot have overlapping rentals 
- There are no cycles in the relationship better-worse between car groups 
- The cancellation date of a reservation is after the reservation date and before the 

beginning of the rental 
- The rentals assigned to a car cannot overlap 

Figure 9 shows the contract for the operation MakeReservation, which involves 
registering a reservation for a car of the specified group for a certain period of time, 

The integrity constraints corresponding to the fragment in Figure 8 are the following: 
- Persons are identified by id, countries by name, branches by name, cars by 

registration number, car models by name, car groups by name and dates by date.  
- The interval of a rental agreement is correct 
- The pick-up time of a rental is after the indicated beginning 
- The return time of a rental is later than its pick-up time 
- The reservation date of a rental is prior to its beginning 

the pick-up and drop-off branches (pickUp and dropOff), the countries that will be 



Had we assumed an extended interpretation, the same operation should have been
specified as shown in Figure 10. Although they specify exactly the same behavior,
this contract is much longer than the one in Figure 9 (11 preconditions compared with
1). The reason is that 10 additional preconditions are required to enforce integrity
constraint violations of the conceptual schema such as checking that the person
making the reservation already exists and that he or she is not blacklisted. 

To specify the contract in Figure 10 we had to detect which constraints of the 
whole set (both textual and graphical) are related to this operation, and then include 
them as preconditions. In addition, the implicit constraints (for example, the creation 
of a relationship requires the existence of the two participants) had to be taken into 
account. This redundancy, besides complicating the specification task itself, clearly 
interferes with conciseness, consistency and modifiability of the whole conceptual 
schema. 

Operation: MakeReservation(renterId: String, beginning: DateTime,  
end: DateTime, pickUp: String, dropOff: String,  
countries: Set(String), carGroup: String, carModel: String) 

Pre: --1. renter exists 
EU_RentPerson.allInstances()->exists(p | p.id = renterId) 
and 

--2. renter not blacklisted 
not Blacklisted.allInstances()->exists(p | p.id = renterId) 
and 

--3. renter does not have overlapping rentals 
let renter:Person = Person.allInstances()-> select(p|p.id = 
renterId)  
in renter.rentalAgreement-> reject(rA | 
rA.oclIsTypeOf(CanceledReservation))->select(rA | 
renter.rentalAgreement->select(rAOther | 
rAOther.beginning.date >= rA.beginning.date and 
rAOther.beginning.date <= rA.agreedEnd)) 
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Taking into account that the conceptual schema includes 38 textual integrity 
constraints that potentially affect the operation, in addition to those constraints that 
can be expressed graphically in the class diagram, the result is that the contract 
becomes much easier and faster to specify when a strict interpretation is assumed, 
since none of the constraints need to be considered when the operation is specified. 
The only precondition of this contract corresponds to a dynamic condition that  cannot 
be specified in the form of an integrity constraint. Notice then that as a consequence 
of the interpretation chosen we can forget about all static conditions when specifying 
operations, since we can assume that they are guaranteed somewhere else in the 
conceptual schema, and only worry about the dynamic behavior that is specific to  the 
operation. 

Note that in the previous contract it is not necessary to specify explicitly in the 
precondition the conditions that are already guaranteed by integrity constraints 
because of the strict interpretation assumed. 

With this information, the system registers a new reservation if there are cars 
available for the requested period. 

visited (countries) and the desired car group (carGroup) or car model (carModel). 

Fig. 10. Contract for MakeReservation, specified assuming an extended interpretation 



--11. there are cars available 
let pickUpBranch: Branch = Branch.allInstances()->  
select(b | b.name = pickUp) 
in pickUpBranch.car -> select(c| c.carGroup = carGroup) ->  
reject(c | c.rentalAgreement.oclAsType(Reservation)-> 
exists(r | r.agreedEnd > beginning and r.agreedEnd < end and 
not r.oclIsTypeOf(CanceledReservation))->  
union(Car.allInstances()-> select(c | c.carGroup = carGroup 
and c.rentalAgreement->exists(r | r.agreedEnd < beginning 
and r.dropOffBranch = pickUpBranch) ->notEmpty() 
 

Post: --a new reservation is created with the information provided 
res.oclIsNew() and res.oclIsTypeOf(Reservation) and 
res.renter.id = renterId and 
res.beginning.date = beginning and  
res.initEnd = end and 
res.pickUpBranch.name = pickUp and 
res.dropOffBranch.name = dropOff and 
res.country.name = countries and 
not carGroup.oclIsUndefined() implies 
res.requestedGroup.name = carGroup and 
not carModel.oclIsUndefined() implies 
res.requestedModel.name = carModel and 
res.reservationDate = currentTime() 

It is easy to see that repetition in preconditions of information already specified in 
integrity constraints can lead to mistakes. For example, we could have mistakenly 
written precondition 10 as currentTime()>beginning, which would be inconsistent 
with the integrity constraint “the reservation time of a rental is prior to its  beginning”. 

On the other hand, assume that there is a change in the business rules and now a 
person can have overlapping rentals. To modify the specification while keeping it 
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--6. branches in countries 
let pickUpCountry: String= Branch.allInstances()-> 

 

select(b | b.name = pickUp).country 

let dropOffCountry: String= Branch.allInstances()->  
select(b | b.name = dropOff).country  
in countries->includes(pickUpCountry) and countries->  
includes(dropOffCountry) and 

--7. if not empty, car group exists 
carGroup->notEmpty() implies CarGroup.allInstances()->  
exists(c | c.name = carGroup) and 

--8. if not empty, car model exists 
carModel->notEmpty() implies CarModel.allInstances()->  
exists(c | c.name = carModel) and 
--9. either carModel or carGroup are empty, and not both 
carModel->isEmpty() xor carGroup->isEmpty() and 

--10. reservation date prior to beginning date 
currentTime() < beginning 

--4. branches exist 
Branch.allInstances()->exists(b | b.name = pickUp) and 
Branch.allInstances()->exists(b | b.name = dropOff) and 

--5. countries exist 
countries-> forAll(name | Country.allInstances()-> 
exists(c|c.name=name)) and 

Fig. 10. (continued) 



7  Conclusions and Further Work 

In this paper we have dealt with the semantics of operation contracts in conceptual 
modeling. We have described two different interpretations of operation contracts, a 
strict and an extended one, which differ in the way that the relationship between 
operation postconditions and integrity constraints is understood. Roughly speaking, a 
strict interpretation prevents an operation from being applied if an integrity constraint 
is violated. In contrast, an extended interpretation assumes its semantics must take 
care of maintaining integrity constraints when they are violated as a consequence of 
applying the events that satisfy the postcondition. 

We have provided formal definitions for the strict and the extended interpretations 
and compared them in a number of issues from the perspective of the characteristics 
of a good software specification. We conclude that a strict interpretation performs 
better than an extended one in terms of consistency, modifiability and conciseness of 
the conceptual schema, while an extended interpretation is better in terms of 
verifiability, and they both offer similar contributions in relation to completeness. 
Moreover, our case studies indicate that a strict interpretation considerably simplifies 
the task of developing a specification. Thus, we have shown that a strict interpretation 
of operation contracts provides several advantages over an extended one.   

This study was independent of any specific conceptual modeling language and our 
results can therefore be applied to any of such language, provided that it allows the 
definition of integrity constraints in the structural schema and operations in the 
behavioral one. 
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We have also applied our ideas to the specification of a generic conceptual schema 
for the e-marketplace domain [19]. This conceptual schema is specified in UML, in
combination with OCL, to formalize the structural and behavioral properties of this
information system. 

Our generic e-marketplace conceptual schema has been drawn from an external 
study of some well-known e-marketplaces and auction sites like eBay, OnSale and 
Amazon, as well as the job search site Monster, and it covers the main functions of an 
e-marketplace: determining product offerings, searching for products and price 
discovery. The whole specification includes 54 entity types, 26 relationship types, 94 
constraints and 51 operations that can modify the state of the information base. 

We used a strict interpretation of operation contracts in the specification of this 
conceptual schema. The results of this case study are very similar to the ones for EU-
Rent, but even more revealing, since this time all the operations benefited from the 
choice of a strict interpretation. 

consistent, not only will we have to modify the constraint “a customer cannot have 
overlapping rentals”, but also review each of the 81 operations in order to update  their 
preconditions in case this requirement appears in them. This, as well as making  the 
modification tedious, can lead to inconsistencies if it is overlooked in a given 
contract. 
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Abstract. W3C’s Semantic Web provides a common framework that allows 
data to be shared and reused across application and enterprise. As the Semantic 
Web shapes the future of the Web, it becomes more and more important in 
software engineering and enterprise application development. While existing 
ontology engineering tools provide a stack of ontology management support 
and are used successfully in certain domains, there still remains a gap between 
the ontology engineering tools and the traditional software engineering. For 
several decades, software engineering has been established on different model-
ing languages and methodologies such as Unified Modeling Language (UML). 
The differences in modeling languages and methodologies cause difficulties in 
enterprise application development involving the Semantic Web technologies. 
The existing ontology engineering tools provide only an ad hoc approach to 
bridging this gap with limited functionality and performance. The primary  
objective of our work is to bridge this gap between two different, but comple-
mentary engineering disciplines with a systematic approach. Our approach lev-
erages Model-Driven Architecture (MDA) and Ontology Definition Metamodel 
(ODM), which enable model transformation. This approach allows seamlessly 
supporting existing models in UML and other languages in Semantic Web-
based software development. In addition, it allows exploiting the availability 
and features of UML tools for creation of vocabularies and ontologies.  
Furthermore, MDA enables code generation and facilitates software tool devel-
opment. This paper presents an MDA-based system for ontology engineering. 
In addition, it presents the entire stack of individual components of the devel-
oped ontology engineering tool.  

Keywords: Semantic Web, ontology engineering, model-driven architecture. 

1   Introduction 

W3C’s Semantic Web [1] provides a common framework that allows data to be 
shared and reused across application and enterprise. It is based on the Resource De-
scription Framework (RDF), which describes various resources using XML for syntax 
and URIs for naming [10], and Web Ontology Language (OWL), which provides 
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modeling constructs for specifying and inferring about knowledge [16]. As the Se-
mantic Web shapes the future of the Web, it becomes more and more important in 
software engineering and enterprise application development. To meet the needs, a 
number of tools and systems for ontology development and management such as Pro-
tégé [28], Jena [4], Sesame [29], Pellet [26], KAON [15], RStar [14], and SnoBase 
[12], have been developed.  

While these ontology engineering tools provide a relatively complete stack of ontol-
ogy management support and are used successfully in certain domains, there still remains 
a gap between the ontology engineering tools and the traditional software engineering. 
For more than a decade, software engineering has been established on different modeling 
languages and methodologies such as OMG’s Unified Modeling Language (UML). This 
difference in modeling languages and methodologies causes difficulties in large-scale en-
terprise application development involving the Semantic Web technologies. The existing 
ontology engineering tools provide only an ad hoc approach to bridging this gap with 
limited functionality and performance. The creation of ontologies and their use in soft-
ware engineering projects is currently cumbersome and not seamless. The transformation 
of UML models to OWL ontologies and vice versa is conducted only in an ad hoc and 
incomplete way. Therefore, it is difficult to utilize the vast investment of enterprises in 
software engineering models, which are often accumulated over a decade, in ontology 
engineering. For the Semantic Web to have impact on enterprises and their business, and 
also to be widely accepted as a value-adding technology, bridging this gap in software 
and ontology engineering is critical. 

The primary objective of our work is to bridge this gap between two different, but 
complementary engineering disciplines with a systematic approach. We leverage 
OMG’s Model-Driven Architecture (MDA) [3] and Ontology Definition Metamodel 
(ODM) [25] to provide model transformation. This approach allows seamlessly sup-
porting existing models in UML and other languages in Semantic Web-based soft-
ware development. In addition, it allows exploiting the availability and features of 
UML tools for creation of vocabularies and ontologies. Furthermore, MDA enables 
code generation and facilitates tool development. This paper presents a model-driven 
approach to ontology engineering. It describes the architecture of the ontology engi-
neering system, and mappings between UML and OWL for model transformation. In 
addition, it presents the entire stack of individual components of the developed ontol-
ogy engineering tool.  

The rest of this paper is structured as follows: In Section 2, we describe a number 
of existing software tools for ontology development and management. It discusses a 
gap between these ontology engineering tools and the traditional software engineering 
tools. Sections 3 and 4 summarize technical background information on the Model-
Driven Architecture and Ontology Definition Metamodel, respectively. In Section 5, 
we explain how EMF-based technologies for MDA and ODM are used to realize the 
proposed system for ontology engineering. Section 6 presents an implementation of 
the proposed system with the entire stack of components. Section 7 presents use sce-
narios illustrating how the features of the developed ontology engineering tool can be 
utilized in real-world applications. In Section 8, conclusions are drawn and future 
work is outlined. 
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2   Traditional Ontology Management Systems  

In recent years, there has been a surge of interest in using ontological information for 
communicating knowledge among software systems. As a result, an increasing range 
of software systems engage in a variety of ontology management tasks, including the 
creation, storage, search, query, reuse, maintenance, and integration of ontologies. 
Recently, there have been efforts to externalize such ontology management burden 
from individual software systems and put them together in middleware known as an 
ontology management system. An ontology management system provides a mecha-
nism to deal with ontological information at an appropriate level of abstraction. By 
using programming interfaces and query languages the ontology management system 
provides, application programs can manipulate and query ontologies without the need 
to know their details or to re-implement the semantics of standard ontology lan-
guages. Examples of such ontology management systems include Protégé [28], Jena 
[4], Sesame [29], Pellet [26], KAON [15], Jastor [23], D2RQ [19], RStar [14], and 
SnoBase [12].  

Table 1 summarizes a few ontology management systems. It is important to note 
that these systems mainly focus on the manipulation of ontologies. The interoperability 
with other modeling languages and development tools comes as a secondary feature for 
these systems. That is, they assume separate workspaces for ontology management and 
software development, and fail to provide a tightly integrated environment for software 
and ontology engineering.  

Table 1. Traditional Ontology Management Systems 

 

Name Functionalities Standards Interoperability
Jena A program development frame-

work for ontology manipulation 
and query 

RDF, RDFS, 
OWL, 
SPARQL

N/A

Sesame An RDF database allowing ontol-
ogy manipulation and query 

RDF, RDFS, 
OWL N/A

Protégé A graphical ontology editor and 
knowledge base framework for on-
tology manipulation and query 

RDF, RDFS, 
OWL 

Through plugins (with 
limited capability); 
UML  OWL ontol-
ogy 

KOAN A suite of ontology management 
tools including ontology creation, 
ontology manipulation, and infer-
ence and query 

RDF, RDFS, 
OWL RDB schema  RDFS 

ontology  

Jastor A java code generator for creating 
Java beans from OWL ontologies 

RDF, RDFS, 
OWL 

OWL ontology  Java 
Beans 

D2RQ A language and a tool for specify-
ing mappings between relational 
database schema and OWL on-
tologies 

RDF, RDFS, 
OWL RDB schema  OWL 

ontology 
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    While these ontology engineering tools provide a stack of ontology management 
support, they also show certain limitations in supporting large-scale software engi-
neering projects. Participating in a number of enterprise application development pro-
jects by using the SnoBase and RStar Ontology Management System, we learned 
firsthand that it is critical to provide a comprehensive development environment in-
cluding supporting tools and facilities for the application developers. A pick-and-
choose approach to the best of the breed tools from different environments does not 
always work well for the majority of the developers and often results in a longer 
learning curve for the developers. A comprehensive ontology development environ-
ment often means a tight integration of tools for software and ontology engineering, 
and model import and transformation, among others.  

Semantic markup languages such as W3C’s RDF and OWL are based on the work 
in the logic and Artificial Intelligence communities, such as Description Logic and 
Knowledge Representation. The syntax of these languages is less intuitive to those 
trained for object-oriented programming and simple XML-based languages. The lack 
of a tightly integrated development environment for software and ontology engineer-
ing makes the job of subject matter experts and software engineers difficult, and often 
affects negatively to the adoption of the semantic technology in industry. An effective 
ontology application development environment should bridge this gap between soft-
ware engineering and ontology engineering by providing a seamlessly integrated  
environment. 

Another consideration for industry adoption of the semantic Web technology is the 
interoperability of the semantic markup languages with the well-established and 
widely-accepted industry standard modeling languages and methodologies such as 
Entity-Relation (ER) diagrams and Unified Modeling Language (UML). Enterprises 
developed software models in these languages for more than a decade and invested 
significantly in building systems around them. Despite all the theoretical advantages 
the semantic technology brings in, in practice, it is highly unlikely that the enterprises 
abandon the legacy systems and develop new systems around the semantic Web tech-
nology. Instead, users in industry would be interested in the interoperability of the 
modeling languages, and the reuse of the existing models and data with the semantic 
Web technology. The traditional ontology management systems currently provide 
only ad hoc and incomplete methods for the model interoperability. To address the 
practical requirements of industry, this paper introduces a novel approach to ontology 
engineering based on the Model Driven Architecture (MDA), which enables software 
engineers and users to design, build, integrate and manage ontologies and software 
applications in an integrated development environment. 

3   Model-Driven Architecture 

Before presenting the model-driven approach to ontology engineering, we summarize 
the Object Management Group’s Model Driven Architecture, which is one of the two 
pillars of the system’s architecture, along with Ontology Definition Metamodel.  

In the history of software engineering, there has been a notable increase of the use 
of models and the level of abstraction in the models. Modeling has become separated 
from underlying development and deployment platforms, making them more reusable 
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and easier to create and modify by domain experts, and requiring less knowledge of 
specific deployment systems. This trend places software modeling closer to knowl-
edge engineering. The current stage in this evolution is the Model Driven Architec-
ture, which grew out of the standards work conducted in the 1990s for the Unified 
Modeling Language.  

The basic idea of MDA is that the system functionality is defined as a platform-
independent model, using an appropriate specification language and then translated to 
one or more platform-specific models for the actual implementation. To accomplish 
this goal, the MDA defines an architecture that provides a set of guidelines for structur-
ing specifications expressed as models. The translation between platform-independent 
model and platform-specific models is normally performed using automated tools. 
Specifically, MDA defines three levels of abstraction: Computation Independent 
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM). 
CIM is a view of a system that does not show the details of a system structure. In soft-
ware engineering, it is also known as a domain model, which is concerned by domain 
experts. It is similar to the concept of ontology. PIM is a model that is computation de-
pendent, but it is not aware of specific computer platform details. In other words, it is 
targeted for a technology-neutral virtual machine. Specification of complete system is 
completed with PSM. The goal is to move human work from PSM to CIM and PIM, 
and let the detail implementation for a specific platform be generated as much as pos-
sible by automated tools which perform the transformation from PIM to PSM.  

MDA comprises of a four-layer metamodel architecture: meta-metamodel (M3) 
layer, metamodel (M2) layer, model (M1) layer, and instance (M0) layer. Also, it util-
izes several complementary standards from OMG including Meta-Object Facility 
(MOF), Unified Modeling Language (UML) and XML Metadata Interchange (XMI). 
On the top of the MDA architecture is the meta-metamodel, i.e., MOF. It defines an 
abstract language and framework for specifying, constructing and managing technol-
ogy neutral metamodels. It is the foundation for defining any modeling language such 
as UML or even MOF itself. MOF also defines a framework for implementing reposi-
tories that hold metadata (e.g., models) described by metamodels [24]. The main ob-
jective of having the four layers with a common meta-metamodel is to support multi-
ple metamodels and models and to enable their extensibility, integration and generic 
model and metamodel management.  

All metamodels, standard or custom, defined by MOF are positioned on the M2 
layer. One of these is UML, a graphical modeling language for specifying, visualizing 
and documenting software systems. With UML profiles, basic UML concepts (e.g., 
class, association, etc.) can be extended with new concepts (stereotypes) and adapted 
to specific modeling needs. The models of the real world, represented by concepts de-
fined in the corresponding metamodel at M2 layer (e.g., UML metamodel) are on M1 
layer. Finally, at M0 layer, are things from the real world. Another related standard is 
XMI. It defines mapping from MOF-defined metamodels to XML documents and 
schemas. Because of versatile software tool availability for XML, XMI representa-
tions of models, metamodels and meta-metamodel facilitate their sharing in software 
application development.  
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MOF tools use metamodels to generate code for managing models and metadata. The 
generated code includes access mechanisms, or application programming interfaces, to 
read and manipulate, serialize and transform, and abstract the details of various interfaces 
based on access patterns. Eclipse Modeling Framework (EMF) [21] provides a Java im-
plementation of a core subset of the MOF API. EMF started out as an implementation of 
the MOF specification, and evolved into a generic modeling framework and code genera-
tion facility for building tools and other applications based on a structured data model. 
The MOF-like core metamodel in EMF is called Ecore. From a model specification writ-
ten in XMI, EMF generates tools and runtime support to produce a set of Java classes for 
the model, a set of adapter classes that enable viewing and command-based editing of the 
model, and a basic editor. Models can be specified using annotated Java, XML docu-
ments, or modeling tools like Rational Rose, then imported into EMF. It is important to 
note that EMF provides the foundation for interoperability with other EMF-based tools 
and applications. The proposed MDA-based system leverages EMF for implementing 
ontology management tools which run on the Eclipse environment, and utilizes its  
support for model interoperability. 

4   Ontology Definition Metamodel 

MDA and its four-layer architecture provide a solid basis for defining metamodels of 
any modeling language, and so provide a foundation for bringing together software 
engineering and methodologies such as UML with the semantic technology based on 
W3C’s RDF and OWL. Once a semantic markup language such as OWL is defined in 
MOF, its users can utilize MOF’s capabilities for modeling creation, model manage-
ment, code generation, and interoperability with other MOF-defined metamodels.  

Another OMG standard, Ontology Definition Metamodel (ODM) [25] took this 
approach. To comprehend common ontology concepts, ODM used as a starting point 
OWL, which is the result of the evolution of existing ontology representation lan-
guages. ODM defined individual constructs of OWL in MOF, creating an ODM 
metamodel. To leverage graphical modeling capabilities of UML in dealing with 
OWL constructs, ODM also defined an ontology UML profile to support UML nota-
tion for ontology definition. This profile enables graphical editing of ontologies in 
OWL using UML diagrams as well as other benefits of using mature UML CASE 
tools. Finally, the following bi-directional mappings between metamodels complete 
the picture:  

1. mappings between OWL and ODM,  
2. mappings between ODM and the ontology UML profile, and  
3. mappings from the ontology UML profile to other UML profiles.  

    Figure 1 shows a simple example of the bi-directional mappings between metamod-
els. In practice, both UML and ODM models are serialized in XMI, and OWL model 
in XML, the two-way mappings can be implemented by XSLT-based transformations 
[5]. Gasevic et al. summarized existing approaches and tools for transformation  
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Fig. 1. Bi-directional mapping among metamodels 

based transformations, instead of XSLT, to leverage EMF’s generic modeling frame 
between UML models (or UML profiles) and OWL models in [5, 7], and pointed out 
that the XSLT-based transformation is widely used in them. Our work utilized EMF-
work and code generation facility for building tools and other applications. We  
implemented EODM (EMF-based ODM), which is the underlying object model  
generated from ODM by using EMF, for model transformations among OWL, UML 
and other modeling languages. More details will be given in the next section.  

Before moving to the main body of this paper, it is useful to briefly mention yet 
another related effort from W3C, namely, Ontology Driven Architecture (ODA) [17]. 
It combines MDA with the semantic technology differently from the ODM approach. 
It attempts to augment the MDA standards and methodology stack with the semantic 
technology to improve the discipline. It aims to enable unambiguous representation of 
domain terminology, distinct from the rules, enable automated consistency checking 
and validation of invariant rules, preconditions, and post-conditions, and support 
knowledge-based terminology mediation and transformation for increased scalability 
and composition of components. This effort still is in its infancy and at a draft stage. 

5   EMF-Based Ontology Engineering System  

For realizing the model-driven ontology engineering, we utilized the Eclipse Model-
ing Framework, which is open source MDA infrastructure for integration of modeling 
tools [21]. A model specification described in various modeling languages including 
UML, XML Schema, and annotated Java source can be imported into EMF. Then 
EMF produces a set of Java classes for the model, a set of adapter classes that enable 
viewing and editing of the model, and a basic editor. In its current implementation, 
EMF does not provide formal semantics definitions, inference and the related model 
specifications. Our work adds this capability to EMF for providing a comprehensive 
ontology engineering environment and dynamic application integration.  

For adding the semantic model transformation capability to EMF, we leverage the 
specification of Ontology Definition Metamodel. By using EMF and ODM, we gen-
erated a foundational memory model, i.e., Java classes, for the constructs of OWL. 
This foundational memory model is referred to as EODM (EMF-based Ontology 
Definition Metamodel). By adding several necessary helper classes and methods to 
EODM, we can use it to create, edit, and navigate any models in OWL.  
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Also, we added an OWL parser to EODM, which can load OWL files into EMF 
and generate OWL files from EMF, i.e., serialize EMF models to standard OWL files 
in XML. The parser utilizes an XMI adaptor which enables the transformation  
between the OWL models and EODM Ecore models. The transformation is made 
possible by the bi-directional mapping between OWL and the Ecore metamodel. The 
transformation opens a way to interoperability between OWL models and other EMF 
supported models, which currently include ones defined in UML, XML Schema, and 
annotated Java classes. The support of other models such as Entity Relationship mod-
els in EMF will be provided in the near future. By leveraging the OWL parser and the 
bi-directional transformation between the OWL models and the Ecore models, ontol-
ogy application developers can develop ontologies using their favorite model building 
tools, import them into EMF, transform their models into OWL ontologies, enrich 
them with semantics, leverage their inference capability, and utilize the comprehen-
sive development facility of Eclipse and EMF.  

To be more specific, the EODM Ecore model is the MOF core model that repre-
sents ontologies in memory. It is an intermediate model for imported and transformed 
legacy models, as well as the generated ontology, Java code, Java editor and Java edit. 
The development environment allows its users to manipulate EODM Ecore models, 
enrich it with semantic specification, and generate Java code. A default set of bi-
directional mappings between metamodels of legacy models and OWL are developed 
in EMF. Eclipse plug-in developers can extend the mappings to handle other types of 
legacy models, or other elements in legacy models specifying semantics. The gener-
ated Java editor and Java edit provide ready-to-use visual tools to populate or manipu-
lated instances of OWL models. The visual tools are actually copies of the standard 
methods of supporting application development in EMF. Figure 2 illustrates the op-
eration of the EMF-based ontology engineering system. 
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Fig. 2. EMF-based ontology engineering system 

6   Components of the EMF-Based Ontology Engineering System 

This section presents the entire stack of components of the developed, EMF-based on-
tology engineering system. We had two primary design objectives for this system: 
first, support for the entire lifecycle of ontology engineering, and, second, avoiding 
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reinvention of tools and facilities that are already proven to work in software engi-
neering. To achieve these objectives, we designed a software stack which consists of 
six interdependent layers.  

At the core of this EMF-based ontology engineering system is the EODM model, 
which is derived from the Ontology Definition Metamodel and implemented in 
Eclipse Modeling Framework. The bottom layer, EODM core model, provides the  
basic Java programming model for OWL ontologies with all the necessary getter and 
setter functions. It is automatically generated by EMF from the UML models  
for OWL. To this generated core model implementation, certain utility classes and 
methods are added, to benefit Java programmers. On top of the EODM core model 
comes the OWL Parser which parses OWL ontologies, translates them into EODM 
models, and serializes EODM models to standard RDF/XML files. EODM core and 
OWL Parser form the foundation for the entire software stack. The top layer is  
composed of three relatively independent components that are build on top of this 
foundation. The first component is the OWL Inference Engine. It takes an EODM 
model as input, and executes user queries, reasoning about instances and relationships 
among instances and classes. The second component is the Model Transformation. It 
imports existing conceptual models represented in various modeling languages such 
as UML, ER diagrams, and Java interfaces. Then, it transforms the models into one or 
more EODM models. Finally, the OWL Editor provides a graphical ontology author-
ing environment where OWL ontologies in graphic notations are serialized to OWL 
files in a standard XML format. Figure 3 shows the components of the EMF-based 
ontology engineering system. In the rest of this section, we describe each component 
in detail. 

 

Fig. 3. EMF-based ontology engineering system architecture 

6.1   EODM Core Model 

The EMF-based ontology engineering system provides tightly integrated environment 
for software and ontology engineering, providing a stack of useful components. 
EODM provides the run-time library that allows applications to input and output 
OWL ontologies, manipulate them by using Java objects, invoke the inference engine 
and access result sets, and transform among ontologies and other legacy models.  

The EODM core model provides useful classes and methods to access OWL on-
tologies and their instances. Its metamodel is defined in the Ontology Definition 
Metamodel (ODM) specification [25]. It is an MOF2 compliant metamodel that  
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Fig. 4. Class definition in ODM 

allows users to define ontologies by using those constructs defined in RDF Schema 
and extends it. Figure 4 illustrates the class definition of the RDF package. The UML 
OWL. ODM comprises of two packages that define the metamodels of RDF and 
OWL, respectively. The OWL package inherits classes from the RDF package, and 
model of the packages is augmented by a number of bi-directional references to gen-
erate APIs that leverage notification and messaging mechanisms in EMF. Also, there 
are certain design patterns, such as Factory and Singleton, embedded in the code gen-
eration engine of EMF. Therefore, the EODM core model automatically complies 
with the design practices and benefit software engineers. 

6.2   OWL Parser 

The OWL parser analyzes the XML syntax of OWL files and generates EODM mod-
els and a set of RDF triple statements. Figure 5 shows the parser process. The parser 
utilizes XML SAX API to correctly parse each node and its attributes. Then, the RDF 
triple analyzer assembles the resulting nodes and attributes to generate RDF triples by 
maintaining a state stack for keeping node and property states. In RDF and OWL, 
knowledge is simply a collection of statements, each with a subject, verb and object, 
and nothing else [27]. The RDF triple statements can be directly used by applications. 
They can be asserted into a working memory of inference engine for reasoning. They 
also can be stored in a database for triple-based RDF graph retrieval. A model wrap-
per can envelop RDF triples into an EODM model. Therefore, the OWL parser can 
create both RDF triple statements and an object-oriented memory model for further 
manipulation in applications. In addition, we also provide a tool for serializing 
EODM models into standard OWL files. 
    The OWL parser is completely compliant with W3C’s XML syntax specification 
and passes all W3C’s positive and negative test cases [8]. It utilizes a streaming  
XML parser, i.e., SAX parser, and once an RDF statement is formed, the parser can 
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Fig. 5. OWL parser process 

immediately export the statement. This property allows the parser to require minimal 
amount of memory and thus to be scalable in handing large-scale models. Also, it is 
important to note that the OWL parser can be used independently of other compo-
nents of the system.  

6.3   Inference Engine 

The inference engine of the EMF-based ontology engineering system approaches the 
core inference problem of OWL by a structural subsumption algorithm. The present 
Description Logic classification algorithm is based on the tableau algorithm [9], 
which can provide sound and complete reasoning on a very expressive language by 
satisfaction test. However, this approach focuses on the tractability of a single sub-
sumption test and the worst case computational complexity is NEXP-time [13]. In 
practical cases, however, an algorithm with high efficiency but less expressiveness 
would be more useful in supporting large-scale taxonomic classification problems. To 
achieve a balance between efficiency and expressive power, we leveraged the struc-
tural subsumption algorithm, which is known to be an efficient technique but also 
known to be limited due to its inability to provide complete reasoning for expressive 
languages. The concepts and axioms supported by this approach is defined as follows: 

Concepts: (Cyclic concept definitions are not supported) 
C, D   t  A (atomic concept), º (universal concept),  (bottom concept),  

C6D (intersection), C7D (union), R.C (some value from restriction)
R.C (all value from restriction), R.{x}| (hasValue) 

Axioms: 
Axioms t CbD (concept inclusion), RbS (role inclusion)  

    In ontologies without an acyclic definition, every defined concept is treated as a re-
striction on some properties, and an atom concept is treated as a “special” restriction. 
For example, C h A 6 B 6 R.( S.C)  is treated as a concept with restriction on RA, 
RB, R, where RA, RB is special restriction brought by atom concept A and B. To de-
cide whether two concepts are subsumed by each other, we can recursively compare 
those restrictions by applying basic comparison rules captured in Table 2. Figure 6 il-
lustrates a simple example of a structural subsumption test by using the comparison 
rules. 
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Table 2. Comparison rules for structural subsumption tests 

Concept 
A 

Concept 
B 

 A b B Condition 

R.C S.D Iff  R ] S and CbD 
R.C S.D Iff  S ] R and CbD 
únR.C úmS.D Iff  R ] S and CbD and nñm 
ñnR.C ñmS.D Iff  S ] R and DbC and núm 

EbG 

b 

b 

b 

Given Ah R1.C6 R2.( R4.D)6 R3.E, Bh R2.( R4.F) 6 R3.G, DbF, EbG, 
it can be concluded that AbB. 

R2.( R4.D) 

R3.E 

R2.( R4.F) 

R3.G 

R4.F 

R4.D 

R1.C 

A B 

DbF 

b 

 

Fig. 6. A simple structural subsumption test example 

    The main idea of the extended structural subsumption algorithm is to leverage the 
information of concept definitions by maintaining a classification tree to perform 
taxonomic classification. The algorithm starts with building the classification tree. 
Given an axiom CbD,  the algorithm first recursively classifies C, D and all the sub 
constitutes until all of them have been correctly linked into the classification tree. 
Then, it adds the subsumption link between C and D, which will automatically  
remove all the outdated links. More details of the inference algorithm is a subject of 
another paper we are preparing. Figure 7 shows an example of classifying a TBox 
which contains the following definitions: 

C h R3.(A6B) 6 R4.D 
F h R1.A 6 R2.B 
D b E,  

R3.A b R2.B 
R4.E b R1.A  

6.4   Model Transformation 

This layer in the EMF-based ontology engineering system addresses the ontology ac-
quisition and model interoperability issues, as we discussed earlier. Enterprises devel-
oped IT models in various modeling languages such as UML and ER diagrams for 
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Fig. 7. An example of classifying a TBox 

several decades and invested heavily in building systems around them. It is important 
for the enterprises to protect their investment in the legacy systems. Also, it is impor-
tant to leverage domain knowledge captured in the existing IT models. Thus, users in 
industry are interested in the interoperability of the modeling languages and the reuse 
of the existing models with the semantic Web technology. The interoperability allows 
exploiting the availability and features of UML tools for creation of vocabularies and 
ontologies. In addition, it allows augmenting the legacy models with formal seman-
tics, and enabling an inference capability with the models, which can return sound and 
complete query results.  

Figure 8 shows the Ecore metamodel and its role in MDA. Ecore is a java imple-
mentation of the MOF model. Therefore, we can utilize Ecore as an intermediate 
model to support model transformation between OWL and other modeling languages. 
For example, a UML class diagram can be, first, transformed into an Ecore model by 
using the mapping between the UML metamodel and the Ecore metamodel, and, then, 
the resulting Ecore model can be transformed into an EODM model by using the 
mapping between the ODM metamodel and the Ecore metamodel. This way, it is pos-
sible to construct an ontology from legacy models. On the other hand, an OWL ontol-
ogy can be transformed into a UML diagram. There already exist transformations  
defined between the Ecore model and other modeling languages such as UML, XSD 
and Java interfaces. In EODM, a mapping between the Ecore metamodel and the 
ODM OWL metamodel is defined. Then, we can implement model transformation by 
leveraging well-developed facilities of EMF as much as possible. XSLT-based ap-
proaches are more or less affected by the syntax of OWL and XMI, because the files 
written in these languages can be represented in different forms, but with the same 
semantics [5, 7]. Our approach is based on a memory model mapping approach, and, 
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thus, independent of the syntax of OWL and XMI. However, it is fair and important 
to note that a problem of model transformation is about expressiveness differences  
between models. With the current Ecore model, an OWL ontology cannot be fully 
transformed into a UML model without loss of semantics, and vice versa. The expres-
siveness of the Ecore model is gradually improved to cover more models.  

 
(a) Ecore metamodel as an implementation of MOF 

 

 
(b) Ecore metamodel structure 

Fig. 8. Ecore metamodel and its role in MDA 

    Figure 9 depicts the bi-directional mappings defined between the Ecore metamodel 
and the EODM OWL metamodel. An OWL Ontology is transformed to an EPackage 
and vice versa; an OWL class to an EClass, etc. While the transformation from OWL 
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to Ecore model looks straightforward, there are a few gaps. As in UML, Eclass is a 
first-class entity in the Ecore model. All other entities such as properties are subordi-
nates to Eclass. In OWL, however, all entities in OWL are equal. Thus, different enti-
ties must have different names in OWL. For example, if two properties belonging to 
two different Eclasses have an identical name, a straightforward transformation will 
cause a name conflict problem. The EODM Transformation engine renames proper-
ties with an identical name to ensure a unique name for every entity. Another gap 
comes from the difference in expressiveness from different modeling languages. 
OWL is a formal language which is based on Description Logic. OWL is more ex-
pressive than the Ecore model. There are several OWL constructs that the Ecore 
model does support, e.g., OWL property restrictions used for precise definition of 
concepts. Therefore, some semantics are lost inevitably when conducting transforma-
tion from OWL to Ecore. Also, The Ecore model does not support inference of OWL. 
Particularly, anonymous classes created by using OWL restrictions make the situation 
with inference even more difficult. To address these gaps, the EODM Model Trans-
formation engine currently employs the following tactics: 

• It appends all unsupported OWL constructs as comments; 
• It utilizes the inference engine during transformation to capture all implicit 

subsumption relationships; 
• It only transforms named OWL classes, and discards all anonymous classes; 

and 
• It renames properties with an identical name to ensure a unique name for 

every entity. 
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Fig. 9. Transformation between OWL and Ecore 
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    The well-built model mapping realizes model-driven ontology engineering. How-
ever, it should be pointed out that the differences between model-driven software  
engineering and model-driven ontology engineering. The MDA-based approach to 
software engineering is mostly used to build IT models, automatically transform them 
into deployable code, and effectively maintain the models and the code. On the other 
hand, ontology engineering described in this paper aims at creating, representing and 
maintaining business domain models, which provide rich semantics and are founded 
on well-formed description logic for knowledge representation. The purpose of the 
MDA-based ontology engineering is twofold. First, ontology engineering leverages 
mature technologies and tools developed in software engineering. Second, it is an ap-
proach to linking ontologies (business models) and IT models and thus imposing rich 
semantics to IT models. 

6.5   OWL Editor 

Finally, the OWL editor provides ontology authors with a GUI which enables them to 
visually create an ontology file, enrich OWL ontology files transformed from legacy 
models, and update ontology files. We utilized EMF to automatically generate a tree-
based editor in Eclipse, and replaced the default XMI parser in the generated editor 
with the OWL parser of EODM. The editor framework in EMF follows the Model-
Control-View pattern [6] and uses the adaptor pattern [6] to provide a generic content 
management capability. In addition to the EMF-generated OWL editor, we utilized 
the Graphic Editing Framework (GEF) [20] to develop a graphic editor referred to as 
the EODM workbench, to provide the foundation for graphic views of OWL ontolo-
gies. GEF also supports drag and drop operations and drawing functions. The EODM 

 

 

Fig. 10. Screenshot of EODM workbench 
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workbench provides two hierarchical views; one for OWL classes and restrictions, 
and the other for OWL objects and datatype properties. Furthermore, it provides mul-
tiple views of OWL ontologies and supports different development perspectives. Op-
erations in different views are automatically synchronized in the Eclipse platform. 
Figure 10 gives a screenshot of the EODM workbench. 

In the left hand side of the screen, there are two views of class and property hierar-
chy, which are constructed based on rdfs:subClassOf and rdfs:subPropertyOf. Users 
can also add classes and properties such as subClassOf and subPropertyOf in the two 
trees. In the right hand side, there are a palette, a graphical editor and a property view. 
Users can drag and drop elements in the palette to the editor. Detailed information 
about the ontology and its elements that are not showed in the limited space of the 
editor is viewed and edited in the property view.  

7   Use Scenarios 

This section presents use scenarios illustrating how the features of the proposed EMF-
based ontology engineering tool can be utilized in real-world applications. Our exam-
ple is the model-driven business transformation [11]. Business transformation employs 
business models such as component business models [18] to identify opportunities for 
reducing costs or improve business processes. The model-driven approach to business 
transformation requires a model representation of a variety of business entities such as 
business processes, components, competencies, activities, resources, metrics, KPIs 
(Key Performance Indicators), etc. and their relations. Semantic models or ontologies 
provide useful representation of business models because they can effectively represent 
different types of relations among business entities. Also, the automatic reasoning  
capability of semantic models provides an effective method for analyzing business 
models for identifying cost-saving or process improvement opportunities.  

For example, business performance metrics are associated with business activities. 
By using the relations between business activities and metrics, and also the relations 
between business components and business activities represented in a semantic 
model, a business analyst can infer relations between business components and met-
rics. This type of analysis provides business insights into how the corporate can im-
prove its performance metrics by addressing issues with the business components as-
sociated with the selected set of metrics. Then, by identifying, again in the semantic 
model, IT systems associated with the business components, the analyst may be able 
to suggest recommendations about IT system management to improve performance 
metrics. 
    The first step in realizing this model-driven business analysis scenario is the con-
struction of semantic models of various business entities including business processes, 
components, competencies, activities, resources, operational metrics, KPIs. In many 
cases in most enterprises, the classes and relations of these business entities are al-
ready captured in certain legacy modeling languages such as UML class diagrams, ER 
diagrams, relational data models, Java interfaces, spreadsheets, or text documents. 
Therefore, the task of semantic model construction simplifies to transforming the leg-
acy models and merging them into OWL ontologies. The merged OWL ontologies 
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can be enriched with certain semantics such as generalization and specification, and 
cardinality constraints to enhance the effects of business analysis queries. 

To summarize the model transformation process using the EMF-based ontology 
engineering system, it starts by capturing formal and informal semantics of legacy 
models. The model transformation engine transforms formal semantics of input leg-
acy models into OWL models, by utilizing pre-defined mappings between OWL and 
the metamodels of the input models. The ontology engineering system allows an ex-
pert to look into annotations and code of legacy models, and represent the semantics 
in OWL models. Informal semantics are captured as additional axioms and added to 
the OWL models by using the OWL editor. Optional functions of the system, such as 
the source code analysis or natural language processing, facilitate automatically cap-
turing of certain informal semantics and improve the productivity of human experts. 
The overall process of capturing of formal and informal semantics of legacy models 
and representing them in OWL models is referred to as semantics enrichment.  

We have implemented a non-trivial model transformation by using the EODM 
transformation engine. The source model is the Financial Business Object Model (FS-
BOM) from IBM’s Information FrameWork (IFW). IFW permits many types of in-
formation models required by complex enterprise systems for storing and correlating 
classes in a consistent manner. FS-BOM is a component of the overall suite of IFW 
for Financial Services. It was written in UML and provides an enterprise-wide, ge-
neric and flexible model for financial services business. It is usually used as a starting 
point for analysis and design of business systems. Its rich content can be viewed from 
the fact that it has 582 classes and 5878 attributes and associations. This complicated 
structure indicates that more knowledge may be buried deep in the FS-BOM. There-
fore, an inference-enabled representation, for example, by using OWL, is desirable. 
This transformation was conducted by using the EODM transformation engine.  

For another use scenario, we have practiced model-driven ontology engineering in 
customer data integration (CDI) by using the Integrated Ontology Development Tool-
kit (IODT) [22] which includes EODM, the EODM workbench and a persistent ontol-
ogy repository. IODT is publicly available at IBM’s alphaWorks. In the CDI project, 
we used OWL ontologies to model concepts and properties describing customers, and 
populated customer data as instance in the OWL ontologies. More precisely, ontologies 
are adopted to describe and automatically classify customer data, and eventually  
support semantic queries on the customer data. Figure 11 shows a skeleton model 
transformation process in CDI. First, there are legacy UML class diagrams represent-
ing customer classification hierarchies, for example, (bank subCategoryOf FinancialIn-
stitute). By using the EODM transformation engine, the UML diagrams are trans-
formed into an Ecore model as shown. Next, the Ecore model is transformed into an 
OWL ontology. In the EODM workbench, the generated ontology is further custom-
ized by adding, modifying or deleting classes and properties, as necessary. For  
instance, an OWL class named “BDWCustomer” is additionally defined as a someVal-
uesFrom restriction on Property “buy” with “BDW” as the range class (BDW means 
Banking Data Warehouse.). Then, as shown in Figure 12, we deployed the semanti-
cally enriched ontologies into IODT’s persistent repository and populated customer 
data as ontology instances. In the ontology repository, customer data is represented and 
stored as RDF triples. The customer data is classified based on OWL ontology reason-
ing. For example, the customer “SD Bank” is automatically classified as an  
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Fig. 11. A model transformation example 

Original Customer Data
ID          Name                BuyProduct …
10243    SD Bank           MD:BDW001 …
10244    Hydri Co.Ltd VoIP …
10245    Laser Co.Ltd ThinkPad        …

Ontology Data
<uri_10243, rdf: type, Customer>
<uri_10243, customerName, “SD Bank”>
<uri_10243, buy, MD:BDW001>
<MD:BDW001, rdf:type, MD:BDW>
<uri_10244, rdf:type, Customer>
<uri_10244, customerName, “Hydri Co.Ltd”>
<uri_10244, buy, VoIP>
<uri_10245, rdf:type, Customer>
<uri_10245, customerName, “Laser Co.Ltd”>
<uri_10245, buy, Thinkpad>

Ontology Data after Reasoning
<uri_10243, rdf:type, BDWCustomer>
<uri_10243, customerName, “SD Bank”>
<uri_10244, rdf:type, TelecomCompany>
<uri_10244, customerName,”Hydri Co.Ltd”>
<uri_10245, rdf:type, Others>
<uri_10245, customerName, “Laser Co.Ltd”>

Populate

Inference

SPARQL Query Example:
PREFIX md:<http://ibm.com/CDI> 
SELECT?name, ?products
WHERE ( ? customer rdf:type md:Bank ) ( ? customer md:buy ?products )
( ?customer md:customerName ?name )

Results:
name              products

SD Bank           MD:BDW001  
Fig. 12. Queries in ontology-driven customer data integration 
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instance of class “BDWCustomer.” Finally, users can issue SPARQL queries on the 
customer data and obtain query results accordingly. Figure 12 illustrates queries in the 
ontology-driven customer data integration system. 
    In summary, we started from legacy customer models in UML. By using the EODM 
transformation engine and the EODM workbench, an OWL ontology for customer data 
is generated and enriched. After customer data is populated into a persistent ontology 
repository, inference is conducted for instance classification. The EODM reasoning 
engine is used for OWL ontology TBox inference. Also, SPARQL queries are sup-
ported for semantic search on customer data. The CDI system provides a use scenario 
that validates the importance and efficiency of model-driven ontology engineering. 

8   Concluding Remarks 

As the Semantic Web shapes the future of the Web, it becomes more and more impor-
tant in software engineering and enterprise application development. However, the 
adoption of Semantic Web by industry has been slowed by a gap between ontology 
engineering tools and the traditional software engineering. Ontology engineering and 
software engineering have been established on different modeling languages and 
methodologies, which has caused difficulties in large-scale enterprise application de-
velopment involving the Semantic Web technologies. Currently, transformation of 
UML models to OWL ontologies and vice versa is conducted only in an ad hoc and 
incomplete way. 

This paper presented a novel approach to bridging this gap between two different, 
but complementary engineering disciplines with a systematic approach. We leveraged 
OMG’s Model-Driven Architecture and Ontology Definition Metamodel to provide 
model transformation, utilizing underlying standards including MOF-based metamod-
els, XMI representation, UML extension with profiling, and EMF implementation of 
MOF. This approach allows seamlessly supporting legacy models in UML and other 
languages in Semantic Web-based software development. In addition, it allows ex-
ploiting the availability and features of UML tools for creation of vocabularies and 
ontologies. Furthermore, it supports code generation and facilitates tool development. 
This paper presented the methodology and architecture of the EMF-based ontology 
engineering system, and mappings between UML and OWL for model transforma-
tion. In addition, it presented the entire stack of the developed ontology engineering 
system. Finally, it presented use scenarios illustrating how the features of this system 
can be utilized in real-world applications. 

This model-driven ontology engineering is still in its infancy. For this approach to 
meet its promises and scale for industry applications, a number of technical chal-
lenges need to be addressed. Some directions for further investigation include:  

• Study of the theoretical limitations of the model transformation under the EMF 
context and a complete definition of bi-directional mappings between the 
Ecore metamodel and semantic metamodels to support model transformation; 

• Support for more legacy modeling languages and methodologies in addition to 
UML, XSD and Java interfaces which we have addressed in the current sys-
tem, e.g., relational data models and spreadsheets traditionally popular in the 
business environment;  
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• Validation of the proposed advantage of utilizing features of visual UML tools 
for creating and editing ontologies in real-world applications;  

• Evaluation of EMF’s capability of code generation for facilitating tool devel-
opment; 

• Augmenting the proposed model transformation method with capabilities for 
source code analysis and text mining to facilitate acquisition of certain infor-
mal semantics of legacy models; and 

• Maturation of the holistic EMF-based ontology engineering framework by  
applying and validating it in real-world business applications. 
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Abstract. Knowledge representation languages that combine rules with
object-oriented features akin to frame systems have recently attracted a
lot of research interest, and F-logic is widely seen as a basis to achieve this
integration. In this paper we extend the original F-logic formalism with
an array of salient features that are essential for representing and reason-
ing with commonsense knowledge. In particular, we extend the syntax
and semantics of F-logic to incorporate nonmonotonic multiple inheri-
tance of class and instance methods in the presentence of class hierarchies
defined via rules. The new semantics is completely model-theoretic and is
free of the defects that caused the original F-logic to produce unintuitive
results due to the unusual interaction between default inheritance and
inference via rules. Moreover, we provide a computational framework
for the new F-logic semantics which can be implemented by inference
engines using either forward or backward chaining mechanisms.

1 Introduction

With computer systems getting more powerful and once esoteric information
management problems becoming commonplace, attention is again shifting to
knowledge representation languages that combine rules with object-oriented fea-
tures akin to frame systems. Recently, W3C created a new working group, which
is chartered with producing a recommendation for a standardized rule language
that could serve as an interchange format for various rule-based systems [38].
According to the charter, the future language will support features inspired by
object-oriented and frame-based languages.

As a prominent formalism in applications where both rules and frame-based
representation are highly desired, F-logic has found its success in many areas, in-
cluding Semantic Web [9,10,3,8], intelligent networking [24], software engineering
[17,13], and industrial knowledge management [2,39]. F-logic based systems are
available both commercially [33] and from the academia [14,46,40,30]. These sys-
tems were built for different purposes and offer different degrees of completeness
with respect to the original specification.
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One major technical difficulty in this field is inheritance semantics, especially
the issues related to overriding and conflict resolution [22,45]. A recent study [29]
shows that inheritance — especially multiple inheritance — permeates RDF
schemas developed by various communities over the past few years. Multiple
inheritance is therefore likely to arise in Semantic Web applications as they
grow in complexity and as rule engines start playing a more prominent role in
such applications. However, current Semantic Web standards do not support
multiple inheritance. Some of the F-logic based systems mentioned earlier do
not support it either. Support provided by other systems is either incomplete or
problematic in various ways.

The difficulty in defining a semantics for inheritance is due to the intricate
interaction between inference by default inheritance and inference via rules. We
illustrate this problem in Section 3. Although this problem was known at the
time of the original publication on F-logic [22], no satisfactory solution was
found then. Subsequent works either tried to rationalize the original solution or
to impose unreasonable restrictions on the language [32,19,31]. We discuss these
limitations of the related work in Section 11.

Our earlier work [45] proposed a solution to the above problem by develop-
ing a semantics that is both theoretically sound and computationally feasible.
However, this semantics (like the one in [22] and most other related works) is
restricted to the so called class methods [36] (or static methods in Java terminol-
ogy) and to a particular type of inheritance, known as value inheritance, which
is more common in Artificial Intelligence. The notion of instance methods — a
much more important object-oriented modeling tool — was not supported in the
language or its semantics. In this paper we extend F-logic to include instance
methods and a new kind of inheritance, called code inheritance, which is analo-
gous to inheritance used in programming languages like C++ and Java (and is
different from inheritance typically found in AI systems).

Of course, neither instance method nor code inheritance is new by itself.
Our contribution is in porting these notions to a logic-based language and the
development of a complete model theory and inference procedure for this new
class of methods and inheritance. Furthermore, these concepts are defined for
vastly more general frameworks than what is found in programming languages
or in the literature on logic-based inheritance. This includes systems with class
hierarchies defined via rules (intensional class hierarchies), multiple inheritance
with overriding, deductive systems with inheritance, both instance and class
methods, and both value and code inheritance.

This paper is organized as follows. Section 2 introduces the basic F-logic syn-
tax that is used throughout the paper. Section 3 motivates the research problems
concerning inheritance and rules by presenting several motivating examples. The
new three-valued semantics for F-logic is introduced in Section 4. Section 5 de-
fines inheritance postulates, which bridge the formal semantics and its “real
world” interpretation, and Section 6 formalizes the associated notion of ob-
ject models. The computational framework is presented in Section 7. Section 8
introduces the notion of stable object models. Section 9 further develops the
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cautious object model semantics and discusses its properties. It is shown that
every F-logic knowledge base has a unique cautious object model. Implementa-
tion of the cautious object model semantics and its computational complexity is
described in Section 10. This implementation can be realized using any deductive
engine that supports the well-founded semantics for negation [15] and therefore
can be done using either forward or backward chaining mechanisms. Related
work is discussed in Section 11 and Section 12 concludes the paper. Since some
of the proofs are rather subtle and lengthy, we relegate them to the Appendix
in the hope that this will help the reader focus on the main story line. Shorter
proofs appear directly in the main text.

2 Preliminaries

F-logic provides frame-based syntax and semantics. It treats instances, classes,
properties, and methods as objects in a uniform way. For instance, in one context,
the object ostrich can be viewed as a class by itself (with members such as tweety
and fred); in a different context, this object can be a member of another class
(e.g., species). Whether an object functions as an instance or a class depends on
its syntactic position in a logical statement. F-logic does not require instances
and classes to be disjoint.1

To focus the discussion, we will use a subset of the F-logic syntax and include
only three kinds of atomic formulas. A formula of the form o : c says that object
o is a member of class c; s :: c says that class s is a (not necessarily immediate)
subclass of class c; and e[m → v] says that object e has an inheritable method,
m, whose result is a set that contains object v.2 The symbols o, c, s, e, m, and
v here are the usual first-order terms.3

Traditional object-oriented languages distinguish between two different kinds
of methods: instance methods and class methods (also known as “static” meth-
ods in Java). The former apply to all instances of a class while the latter to
classes themselves. In object-oriented data modeling, especially in the case of
semistructured objects, it is useful to be able to define object methods, which
are explicitly attached to individual objects. These explicitly attached methods
override the methods inherited from superclasses. Object methods are similar to
class methods except that they are not intended to be inherited. In F-logic both
instance and class/object methods are specified using rules.

Let A be an atom. A literal of the form A is called a positive literal and
¬A is called a negative literal. An F-logic knowledge base (abbr. KB) is a finite

1 The same idea is adopted in RDF and OWL-Full.
2 The syntax for inheritable methods in [22] and in systems like Flora-2 is e[m �→ v],

while atoms of the form e[m → v] are used for noninheritable methods. However,
noninheritable methods are of no interest here, so we opted for a simpler notation.

3 Recall that a first-order term is a constant, a variable, or a structure of the
form f(t1, . . . , tn), where f is an n-ary function symbol and t1, . . . , tn are first-order
terms.
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set of rules where all variables are universally quantified at the front of a rule.
There are two kinds of rules: regular rules and template rules. Regular rules
were introduced in the original F-logic [22] while the concept of template rules is
one of the new contributions of this paper. Generally, regular rules define class
membership, subclass relationship, and class/object methods. Template rules
represent pieces of code that define instance methods.

A regular rule has the form H :− L1, . . . , Ln, where n ≥ 0, H is a positive
literal, called the rule head, and each Li is either a positive or a negative literal.
The conjunction of Li’s is called the rule body. A template rule for class c has the
form code(c) @this[m → v] :− L1, . . . , Ln. It is similar to a regular rule except
that: (i) it is prefixed with the special notation code(c); (ii) its head must
specify a method (i.e., it cannot be o : c or s :: c); and (iii) the object-position in
the head literal is occupied by the template term @this (which can also appear in
other parts of the rule). We will also assume that c is ground (i.e., variable-free)
and will say that such a template rule defines instance method m for class c.

In the rest of this paper, we will use uppercase names to denote variables
and lowercase names to denote constants. A rule with an empty body is called
a fact. When a regular rule or a template rule has an empty body, we will call it
a regular fact or a template fact , respectively. For facts, the symbol “ :− ” will
be omitted.

3 Motivating Examples

We will now illustrate some of the problems that arise from unusual interaction
among inference via rules, default inheritance, and intensional class hierarchies
(i.e., class hierarchies that are defined using rules). In the following examples, a
solid arrow from a node x to another node y indicates that x is either an instance
or a subclass of y. All examples in this section are discussed informally. The
formal treatment is given in Sections 4, 5, 7, and 9.

3.1 Interaction Between Default Inheritance and Rules

Inheritance Triggering Further Inheritance. Consider the KB in Figure 1. With-
out inheritance, this KB has a unique model, which consists of the first two
facts. With inheritance, however, the common intuition tells us that o ought to
inherit m → a from c. But if we only add o[m → a], the new set of facts would
not be a model, since the last rule is no longer satisfied: with the inherited fact

c[m−>a]

o

o : c.
c[m → a].
c[m → b] :− o[m → a].

Fig. 1. Inheritance Leading to More Inheritance
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included, the least model must also contain c[m → b]. However, this begs the
question as to whether o should inherit m → b from c as well. The intuition
suggests that the intended model should be “stable” with respect to not only
inference via rules but default inheritance as well. Therefore o[m → b] should
also be in that model. This problem was recognized in [22], but the proposed
solution was not stable in the above sense — it was based on plausible, ad hoc
fixpoint computations rather than semantic principles.

c[m−>a]

o

o : c.
c[m → a].
o[m → b] :− o[m → a].

Fig. 2. Interaction between Derived and Inherited Facts

Derived vs. Inherited Information. Now consider Figure 2, which has the same
KB as in Figure 1 except for the head of the last rule. Again, the intuition sug-
gests that o[m → a] ought to be inherited, and o[m → b] be derived to make
the resulting set of facts into a model in the conventional sense. This, however,
leads to the following observation. The method m of o now has one value, a,
which is inherited, and another, b, which is derived via a rule. Although the tra-
ditional frameworks for inheritance were developed without deduction in mind,
it is clear that derived facts like o[m → b] in this example are akin to “explicit”
method definitions and should be treated differently. Typically, explicit defini-
tions should override inheritance. Thus our conclusion is that although deriva-
tion is done “after” inheritance, this derivation undermines the original reason
for inheritance. Again, the framework presented in this paper, which is based
on semantic principles, differs from the ad hoc computation in [22] (which keeps
both derived and inherited facts).

o

c1[m−>a]

c2[m−>b]

o : c1.
c2 :: c1.
c1[m → a].
c2[m → b].
o : c2 :− o[m → a].

Fig. 3. Inheritance and Intensional Class Hierarchy

Intensionally Defined Class Hierarchy. Figure 3 is an example of an intensional
class hierarchy. Initially, o is not known to be an instance of c1. So, it seems
that o can inherit m → a from c1. However, this makes the fact o[m → a] true,
which in turn causes o : c2 to be derived by the last rule of the KB. Since this
makes c2 a more specific superclass of o than c1 is, it appears that o ought
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to inherit m → b from c2 rather than m → a from c1. However, this would
make the fact o : c2 unsupported. Either way, the deductive inference enabled
by the original inheritance undermines the support for the inheritance itself.
Unlike [22], a logically correct solution in this case would be to leave both o : c2

and o[m → a] underdefined. The dashed arrow from o to c2 in Figure 3 represents
the underdefinedness of o : c2.

c2[m−>b]

o

c1[m−>a]
c1[m → a].
c2[m → b].
o : c1.
o : c2 :− o[m → a].

Fig. 4. Derivation Causing Multiple Inheritance Conflicts

Derivation and Multiple Inheritance Conflicts. The example in Figure 4 illus-
trates a similar problem, but this time it occurs in the context of nonmonotonic
multiple inheritance. Initially c2 is not known to be a superclass of o. So there
is no multiple inheritance conflict and the intuition suggests that o should in-
herit m → a from c1. But then o : c2 has to be added to the model in order to
satisfy the last rule. This makes c2 a superclass of o and introduces a multiple
inheritance conflict. As in the previous example, although this conflict became
apparent only after inheritance took place, it undermines the original reason
for inheritance (which was based on the assumption that c1[m → a] is the only
source of inheritance for o). Therefore, both o[m → a] and o : c2 should be left
underdefined. Again, this conclusion differs from [22].

3.2 Inheritance of Code

The inheritance shown in the previous examples is called value inheritance. It
is called so because what gets inherited are the individual values that methods
have in particular classes rather than the definitions of those methods.

We should note that value inheritance is data-dependent. Consider the exam-
ple in Figure 5. At first glance, it appears that there is a multiple inheritance
conflict for object o2 with respect to method m from class c1 and c2. Indeed,
in a traditional programming language like C++, the first two rules in Figure 5
would be considered as part of the code that defines method m in class c1 and
c2, respectively. Since o2 is an instance of both classes, we have a multiple inheri-
tance conflict. In contrast, value inheritance takes into account what holds in the
model of the KB. Clearly, in the example of Figure 5, the premise of the first rule
is true whereas the second is false. This means that the model makes c1[m → a]
true but c2[m → b] false.4 Therefore, if we only look at the values of method m
that actually hold in the model of the KB, then no conflict exists and m → a
can be readily inherited from c1 by o2 (and o1) through value inheritance.
4 Our claims here rely on the closed world assumption.
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o1

c1

o2

c2 c1[m → a] :− p[f → d].
c2[m → b] :− p[f → e].
o1 : c1.
o2 : c1.
o2 : c2.
p[f → d].

Fig. 5. Value Inheritance vs. Code Inheritance

Code inheritance, in contrast, behaves like in traditional programming lan-
guages and the above example would require conflict resolution. In this paper,
we resolve multiple inheritance conflicts cautiously — whenever a conflict arises,
nothing is inherited. To appreciate the difference between value and code in-
heritance, let us revisit the example of Figure 5 using code inheritance. Now
suppose the first two regular rules in Figure 5 are replaced by the following two
template rules (introduced in Section 2):

code(c1) @this[m → a] :− p[f → d].
code(c2) @this[m → b] :− p[f → e].

Note that template rules are prefixed with the notation code(c), for some class
c, to indicate that they make up the code that defines the instance methods for
a particular class.

We call the above rules template rules because they are not the actual rules
that we require to hold true in the model of the KB. Instead, once inherited,
they will be “instantiated” to the actual regular rules that are required to hold
true. In the case of o2, no code is inherited due to multiple inheritance conflict,
as we just explained above. However, o1 can inherit the first template rule from
c1, since there is no conflict. Inheritance of such a template rule is achieved
by substituting the template term @this with o1 in the rule. This results in a
regular rule of the form o1[m → a] :− p[f → d]. This rule and the fact p[f → d]
together enable the derivation of a new fact, o1[m → a].

The above example illustrates the intended use of template rules. The tem-
plate term in a template rule acts as a placeholder for instances of that class.
When the rule is inherited by an instance, the template term is replaced by that
instance and the result is a regular rule. This is akin to late binding in traditional
object-oriented languages.

The treatment of template rules should make it clear that the method m in
our example above behaves like an instance method in a language like Java:
the template rule does not define anything for class c1 as an object; instead, it
defines the method m for all instances of c1. This is because template rules are
not meant to be true in the model of the KB — but those regular rules resulting
from code inheritance are.

The above example also alludes to the fact that value inheritance is a more
“model-theoretic” notion than code inheritance, and that developing a model
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theory for code inheritance is not straightforward. We develop a suitable model
theory in Section 6.

c2[m−>b]c1

o[f−>b]

code(c1) @this[m → a] :− @this[f → b].
o : c1.
o[f → b].
o : c2 :− o[m → a].
c2[m → b].

Fig. 6. Interaction between Template Rules and Regular Rules

Subtle interaction may arise between template rules and regular rules. To il-
lustrate the issue, Figure 6 shows a template rule that defines instance method
m for class c1. On the surface, it seems that o should inherit this piece of code
from c1 and thus acquire the regular rule o[m → a] :− o[f → b]. (Recall that
the template term in the rule is replaced with the inheriting instance). This in-
heritance seems to be possible because o is a member of c1 and at this moment
we cannot conclude that o also belongs to c2.

A more careful look indicates, however, that there is a multiple inheritance
conflict. If o inherits the above rule, then we can derive o[m → a]. But then
we can also derive o : c2 using the fourth rule in Figure 6 (which is a regular
rule). Now, since c2[m → b] is also true, we have a multiple inheritance conflict
analogous to the example of Figure 4. As in the example of Figure 4, the logically
correct solution here is to leave both o[m → a] and o : c2 underdefined.

We thus see that template rules can interact with regular rules in subtle ways
and cause inheritance to be canceled out. In other cases, such interaction might
enable more inheritance. For instance, if instead of c2[m → b] we had c2[n → b],
then inheritance of the template rule by o would not be blocked. Furthermore,
o would inherit n → b from c2 by value inheritance.

3.3 Observations

Nonmonotonic Inheritance. Overriding of inheritance leads to nonmonotonic
reasoning, since more specific definitions take precedence over more general ones.
However, overriding is not the only source of nonmonotonicity here. When an
object belongs to multiple incomparable classes, inheritance conflicts can arise
and their “canceling” effects can also lead to nonmonotonic inheritance.

Intensional Class Hierarchies. A class hierarchy becomes intensional when class
membership and/or subclass relationship is defined using rules. In such cases, the
inheritance hierarchy can be decided only at runtime, as complex interactions
may come into play between inference via default inheritance and inference via
rules. In this interaction, an earlier inference by inheritance may trigger a chain
of deductions via rules which can result in violation of the assumptions that led
to the original inheritance.
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Value Inheritance vs. Code Inheritance. Inheritance of values is fundamentally
different from inheritance of code. Value inheritance is data-dependent — it
depends on the set of assertions in the current KB. Code inheritance is not
dependent on data. Recall that in the example of Figure 5 we derived the fact
o2[m → a] via value inheritance because the premise of the second rule was false
and therefore inheritance was conflict-free from the perspective of value inheri-
tance. If we add the fact p[f → e], then the second rule will derive c2[m → b]
and create a multiple inheritance conflict. In this case, o2 may inherit nothing.

In contrast, if we turn the rules in Figure 5 into template rules, then a multiple
inheritance conflict would always exist regardless of whether the premise of either
rule can be satisfied. As a result, o2 would inherit nothing — whether p[f → d]
and p[f → e] hold true or not.

4 Three-Valued Semantics

The examples in Section 3 illustrate the complex interactions between inference
via default inheritance and inference via rules. These interactions cause infer-
ence to behave nonmonotonically and in many ways like default negation. This
suggests that stable models [16] or well-founded models [15] could be adopted
as a basis for our semantics. Since default negation is part of our language any-
way, adoption of one of these two approaches is fairly natural. In this paper
we base the semantics on well-founded models. Since well-founded models are
three-valued and the original F-logic models were two-valued [22], we first need
to define a suitable three-valued semantics for F-logic KBs. We also need to ex-
tend this semantics to accommodate template rules and to make it possible to
distinguish facts derived by default inheritance from facts derived via rules.

Let P be an F-logic KB. The Herbrand universe of P, denoted HUP, con-
sists of all the ground (i.e., variable-free) terms constructed using the function
symbols and constants found in the KB. The Herbrand instantiation of P, de-
noted ground(P), is the set of rules obtained by consistently substituting all
the terms in HUP for all variables in every rule of P. The Herbrand base of P,
denoted HBP, consists of the following sorts of atoms: o : c, s :: c, s[m → v]ex,
o[m → v] c

val, and o[m → v] c
code, where o, c, s, m, and v are terms from HUP.

An atom of the form o : c is intended to represent the fact that o is an instance
of class c; s :: c states that s is a subclass of c. An atom of the form s[m → v]ex
states that m → v is explicitly defined at s via a regular rule. Atoms of the
forms o[m → v] c

val and o[m → v] c
code, where o 
= c, imply that object o inherits

m → v from class c by value and code inheritance, respectively.
A three-valued interpretation I of an F-logic KB P is a pair 〈T; U 〉, where

T and U are disjoint subsets of HBP. The set T contains all atoms that are
true whereas U contains all atoms that are underdefined. Underdefined atoms
are called this way because there is insufficient evidence to establish their truth
or falsehood. The set F of the false atoms in I is defined as F = HBP − (T ∪ U).
It is easy to see that the usual two-valued interpretations are a special case of
three-valued interpretations of the form 〈T; ∅ 〉.
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Following [34], we will define the truth valuation functions for atoms, literals,
and regular rules. The atoms in HBP can have one of the following three truth
values: t, f , and u. Intuitively, u (underdefined) means possibly true or possible
false. Underdefined atoms are viewed as being “more true” than false atoms,
but “less true” than true atoms. This is captured by the following truth ordering
among the truth values: f < u < t. Given an interpretation I = 〈T; U 〉 of an
F-logic KB P, for any atom A from HBP we can define the corresponding truth
valuation function I as follows:

I(A) =

⎧⎨
⎩

t, if A ∈ T;
u, if A ∈ U;
f , otherwise.

Truth valuations are extended to conjunctions of atoms in HBP as follows:

I(A1 ∧ . . . ∧ An) = min{I(Ai)|1 ≤ i ≤ n}

The intuitive reading of a regular rule is as follows: its rule head acts as an
explicit definition while its rule body as a query. In particular, if s[m → v] is in
the head of a regular rule and the body of this rule is satisfied, then m → v is
explicitly defined for s. In the body of a regular rule, the literal s[m → v] is true
if s has either an explicit definition of m → v, or s inherits m → v from one of
its superclasses by value or code inheritance. Therefore, the truth valuation of a
ground F-logic literal depends on whether it appears in a rule head or in a rule
body. This is formally defined as follows.

Definition 1 (Truth Valuation of Literals). Let I be an interpretation of
an F-logic KB P. The truth valuation functions, Vh

I and Vb
I (h and b stand for

head and body, respectively), on ground F-logic literals are defined as follows:

Vh
I (o : c) = Vb

I (o : c) = I(o : c) Vh
I (s :: c) = Vb

I (s :: c) = I(s :: c)

Vh
I (s[m → v]) = I(s[m → v]ex)

Vb
I (o[m → v])=maxc∈HUP{I(o[m → v]ex), I(o[m → v] c

val), I(o[m → v] c
code)}

Let L and Li (1 ≤ i ≤ n) be ground literals. Then:

Vb
I (¬ L) = ¬Vb

I (L) Vb
I (L1 ∧ . . . ∧ Ln) = min{Vb

I (Li) | 1 ≤ i ≤ n}

For completeness, we define the negation of a truth value as follows: ¬ f = t,
¬ t = f , and ¬u = u.

The following two lemmas follow directly from the above definitions.

Lemma 1. Let I = 〈T; U 〉 be an interpretation of an F-logic KB P, L a ground
literal in ground(P), J = 〈T; ∅ 〉, and K = 〈T ∪ U; ∅ 〉. Then:

(1) If L is a positive literal, then Vb
I (L) = t iff Vb

J (L) = t.
(2) If L is a negative literal, then Vb

I (L) = t iff Vb
K(L) = t.
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(3) If L is a positive literal, then Vb
I (L) ≥ u iff Vb

K(L) = t.
(4) If L is a negative literal, then Vb

I (L) ≥ u iff Vb
J (L) = t.

Lemma 2. Let I = 〈A; ∅ 〉 and J = 〈B; ∅ 〉 be two-valued interpretations of
an F-logic KB P such that A ⊆ B, and let L be a ground literal in ground(P).
Then:

(1) If L is a positive literal and Vb
I (L) = t, then Vb

J (L) = t.
(2) If L is a negative literal and Vb

J (L) = t, then Vb
I (L) = t.

Having defined the truth valuation functions Vh
I and Vb

I for ground literals, we
now extend the truth valuation function I to ground regular rules. Intuitively,
a ground regular rule is true if and only if the truth value of its head is at least
as high as truth value of the rule body (according to the truth ordering). Note
that the truth valuation of either the head or the body is three-valued, but the
truth valuation of a rule is always two-valued.

Definition 2 (Truth Valuation of Regular Rules). Given an interpretation
I of an F-logic KB P, the truth valuation function I on a ground regular rule,
H :− B ∈ ground(P), is defined as follows:

I(H :− B) =
{

t, if Vh
I (H) ≥ Vb

I (B);
f , otherwise.

Given a ground regular fact, H ∈ ground(P):

I(H) =
{

t, if Vh
I (H) = t;

f , otherwise.

Satisfaction of nonground regular rules in an interpretation is defined via instan-
tiation, as usual.

Definition 3 (Regular Rule Satisfaction). A three-valued interpretation I
satisfies the regular rules of an F-logic KB P if I(R) = t for every regular rule
R in ground(P).

5 Inheritance Postulates

Even if an interpretation I satisfies all the regular rules of an F-logic KB P,
it does not necessarily mean that I is an intended model of P. An intended
model must also include facts that are derived via inheritance and must not
include unsupported facts. As we saw in Section 3, defining what should be
inherited exactly is a subtle issue. The main purpose of this section is to formalize
the common intuition behind default inheritance using what we call inheritance
postulates.
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5.1 Basic Concepts

Intuitively, c[m] is an inheritance context for object o, if o is an instance of
class c, and either c[m → v] is defined as a regular fact or is derived via a
regular rule (in this case we say that m → v is explicitly defined at c); or if
there is a template rule which specifies the instance method m for class c. Inher-
itance context is necessary for inheritance to take place, but it is not sufficient:
inheritance of m from c might be overridden by a more specific inheritance con-
text that sits below c along the inheritance path. If an inheritance context is
not overridden by any other inheritance context, then we call it an inheritance
candidate . Inheritance candidates represent potential sources for inheritance.
But there must be exactly one inheritance candidate for inheritance to take
place — having more than one leads to a multiple inheritance conflict, which
blocks inheritance.

The concepts to be defined in this section come in two flavors: strong or weak.
The “strong” flavor of a concept requires that all relevant facts be positively
established while the “weak” flavor allows some or all facts to be underdefined.

Definition 4 (Explicit Definition). Let P be an F-logic KB and I an in-
terpretation of P. We say that s[m] has a strong explicit definition in I, if
max{I(s[m → v]ex)|v ∈ HUP} = t. We say that s[m] has a weak explicit de-
finition in I if max{I(s[m → v]ex)|v ∈ HUP} = u.

Definition 5 (Value Inheritance Context). Given an interpretation I of an
F-logic KB P, c[m] is a strong value inheritance context for o in I, if c 
= o (i.e.,
c and o are distinct terms) and min{I(o : c), max{c[m → v]ex|v ∈ HUP}} = t.
We say that c[m] is a weak value inheritance context for o in I, if c 
= o and
min{I(o : c), max{c[m → v]ex|v ∈ HUP}} = u.

Definition 6 (Code Inheritance Context). Given an interpretation I of an
F-logic KB P, c[m] is a strong (respectively, weak) code inheritance context for o
in I, if c 
= o, I(o : c) = t (respectively, I(o : c) = u), and there is a template rule
in P of the form code(c) @this[m → . . .] :− . . ., i.e., there is a template rule
that defines instance method m for class c.

When the specific type of an inheritance context is immaterial as, for example,
in the following definitions, we will use the term inheritance context without
indicating whether a value or a code inheritance context is meant.

Definition 7 (Overriding). Let I be an interpretation of an F-logic KB P.
We will say that class s strongly overrides inheritance context c[m] for o, if s 
= c,
I(s :: c) = t, and s[m] is a strong (value or code) inheritance context for o.

We will say class s weakly overrides c[m] for o, if either
(1) I(s :: c) = t and s[m] is a weak inheritance context for o; or
(2) I(s :: c) = u and s[m] is a weak or a strong inheritance context for o.

Definition 8 (Value Inheritance Candidate). Given an interpretation I of
an F-logic KB P, c[m] is a strong value inheritance candidate for o, denoted



Inheritance in Rule-Based Frame Systems: Semantics and Inference 91

c[m] s.val
�I o, if c[m] is a strong value inheritance context for o and there is no

class s that strongly or weakly overrides c[m] for o.
c[m] is a weak value inheritance candidate for o, denoted c[m] w.val

� I o, if the
above conditions are relaxed by allowing c[m] to be a weak value inheritance
context and/or allowing weak overriding. Formally, this means that there is no
class s that strongly overrides c[m] for o and either

(1) c[m] is a weak value inheritance context for o; or
(2) c[m] is a strong value inheritance context for o and there is some class

s that weakly overrides c[m] for o.

Definition 9 (Code Inheritance Candidate). Let I be an interpretation for
an F-logic KB P. c[m] is called a strong code inheritance candidate for o, denoted
c[m] s.code

� I o, if c[m] is a strong code inheritance context for o and there is no s
that strongly or weakly overrides c[m] for o.

c[m] is a weak code inheritance candidate for o, denoted c[m] w.code
� I o, if the

above conditions are relaxed by allowing c[m] to be a weak code inheritance con-
text and/or allowing weak overriding. Formally, this means that there is no class
s that strongly overrides c[m] for o and either

(1) c[m] is a weak code inheritance context for o; or
(2) c[m] is a strong code inheritance context for o and there is some class

s that weakly overrides c[m] for o.

c1

c5c4[m−>c]

c2[m−>a]
c3[m−>b]

c1 : c2. c1 : c5.

c2 :: c4. c3 :: c5.

c2[m → a]. c3[m → b]. c4[m → c].

code(c5) @this[m → v] :− @this[f → x].

Fig. 7. Inheritance Context, Overriding, and Inheritance Candidate

Example 1. Consider an interpretation I = 〈T; U 〉 of an F-logic KB P, where

T = {c1 : c2, c1 : c4, c1 : c5, c2 :: c4, c3 :: c5} ∪
{c2[m → a]ex, c3[m → b]ex, c4[m → c]ex}

U = {c1 : c3}

I and P are shown in Figure 7, where solid and dashed arrows represent true
and underdefined values, respectively.

In the interpretation I, c2[m] and c4[m] are strong value inheritance contexts
for c1. c5[m] is a strong code inheritance context for c1. c3[m] is a weak value
inheritance context for c1. The class c2 strongly overrides c4[m] for c1, while
c3 weakly overrides c5[m] for c1. c2[m] is a strong value inheritance candidate
for c1. c3[m] is a weak value inheritance candidate for c1. c5[m] is a weak code
inheritance candidate for c1. Finally, c4[m] is neither a strong nor a weak value
inheritance candidate for c1.
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For convenience, we will simply write c[m] �I o when it does not matter
whether c[m] is a strong or a weak value/code inheritance candidate. Now we
are ready to introduce the postulates for nonmonotonic multiple value and code
inheritance. The inheritance postulates consist of two parts: core inheritance
postulates and cautious inheritance postulates. We formalize the core inheritance
postulates first.

5.2 Core Inheritance Postulates

The following definition says that class membership and subclass relationship
must satisfy the usual transitive closure property.

Definition 10 (Positive ISA Transitivity). An interpretation I of an
F-logic KB P satisfies the positive ISA transitivity constraint if the set of true
class membership and subclass relationship atoms is transitively closed. Formally
this means that the following two conditions hold:

(1) for all s and c: if there is x such that I(s :: x) = t and I(x :: c) = t,
then I(s :: c) = t;

(2) for all o and c: if there is x such that I(o : x) = t and I(x :: c) = t,
then I(o : c) = t.

The context consistency constraint below captures the idea that only explicit
definitions are inherited and that explicit definitions override inheritance.

Definition 11 (Context Consistency). An interpretation I of an F-logic
KB P satisfies the context consistency constraint, if the following conditions
hold:

(1) for all o, m, v: I(o[m → v] o
val) = f and I(o[m → v] o

code) = f ;
(2) for all c, m, v: if I(c[m → v]ex) = f , then I(o[m → v] c

val) = f for all o;
(3) for all c, m: if ground(P) has no template rule that defines instance

method m for class c, then I(o[m → v] c
code) = f for all o, v;

(4) for all o, m: if o[m] has a strong explicit definition, then for all v, c,
I(o[m → v] c

val) = f and I(o[m → v] c
code) = f .

The first condition in the above definition rules out self inheritance. The second
condition states that if m → v is not explicitly defined at c, then no one can
inherit m → v from c by value inheritance. The third condition says that if a
class c does not explicitly specify an instance method m, then no object should
inherit m → v from c by code inheritance, for any v. The fourth condition states
that if o has an explicit definition for method m, then this definition should
prevent o from inheriting m → v from any other class for any v (either by value
or by code inheritance).

Intuitively, we want our semantics to have the property that if inheritance is
allowed, then it should take place from a unique source. This is captured by the
following definition.

Definition 12 (Unique Source Inheritance). An interpretation I of an
F-logic KB P satisfies the unique source inheritance constraint, if the follow-
ing three conditions hold:
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(1) for all o, m, v, c: if I(o[m → v] c
val) = t or I(o[m → v] c

code) = t, then
I(o[m → z] x

val) = f and I(o[m → z] x
code) = f for all z, x such that

x 
= c.
(2) for all c, m, o: if c[m] s.val

�I o or c[m] s.code
� I o, then I(o[m → v] x

val) = f
and I(o[m → v] x

code) = f for all v, x such that x 
= c.
(3) for all o, m, v, c: I(o[m → v] c

val) = t iff
(i) o[m] has neither strong nor weak explicit definitions; and
(ii) c[m] s.val

�I o; and
(iii) I(c[m → v]ex) = t; and
(iv) there is no x such that x 
= c and x[m] �I o.

Uniqueness of an inheritance source is captured via three conditions. The first
condition above says that an object can inherit from a class only if it does not
already inherit from another class. The second condition states that if a strong
inheritance candidate, c[m], exists, then inheritance of method m cannot take
place from any other sources (because there would then be a multiple inheritance
conflict). The third condition specifies when value inheritance takes place. An
object o inherits m → v from class c by value inheritance iff: (i) o has no explicit
definition for method m; (ii) c[m] is a strong value inheritance candidate for o;
(iii) c[m → v] is explicitly defined; and (iv) there are no other inheritance
candidates — weak or strong — from which o could inherit method m.

5.3 Cautious Inheritance Postulates

The core postulates introduced so far impose restrictions only on the part of
an interpretation that contains the facts known to be true. For three-valued
interpretations, we still need to describe the underdefined part more tightly.
Since “underdefined” means possibly true or possibly false, it is natural to expect
that the conclusions drawn from underdefined facts remain underdefined. As is
typical for three-valued semantics, such as the well-founded semantics, we do
not jump to negative conclusions from underdefined facts. This is why we call
our semantics “cautious”.

Definition 13 (Cautious ISA Transitivity). We will say that an interpre-
tation I of an F-logic KB P satisfies the cautious ISA transitivity constraint if
the underdefined part of the class hierarchy is transitively closed; i.e.,

(1) for all s, c: if there is x such that I(s :: x ∧ x :: c) = u and I(s :: c) 
= t,
then I(s :: c) = u;

(2) for all o, c: if there is x such that I(o : x ∧ x :: c) = u and I(o : c) 
= t,
then I(o : c) = u.

Definition 14 (Cautious Inheritance). We will say that an interpretation I
of an F-logic KB P satisfies the cautious inheritance constraint, if for all o, m,
v, c: I(o[m → v] c

val) = u iff
(1) o[m] does not have a strong explicit definition; and
(2) c[m] s.val

�I o or c[m] w.val
� I o; and
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(3) I(c[m → v]ex) ≥ u; and
(4) there is no x 
= c such that x[m] s.val

�I o or x[m] s.code
� I o; and

(5) I(o[m → v] c
val) 
= t.

The cautious inheritance constraint captures the intuition behind multiple in-
heritance based on underdefined knowledge. The conditions above state when
cautious value inheritance takes place. An object o cautiously inherits m → v
from class c by value inheritance if and only if: (i) there is no strong evidence
that method m has an explicitly defined value at o; (ii) c[m] is either a strong
or a weak value inheritance candidate for o; (iii) m → v is explicitly defined
at c; (iv) there are no other strong inheritance candidates that can block value
inheritance from c (by the unique source inheritance constraint); and (v) o does
not already inherit m → v from c by value inheritance.

6 Object Models

A model of an F-logic KB should satisfy all the rules in it. In Section 4 we
formalized the notion of regular rule satisfaction. Here we will extend this notion
to template rules. Recall that when an object inherits a template rule, the rule
is evaluated in the context of that object.

Definition 15 (Binding). Let R be the following template rule which defines
instance method m for class c: code(c) @this[m → v] :− B. The binding of R
with respect to object o, denoted R‖o, is obtained from R by substituting o for
every occurrence of @this in R. In general, we will use X‖o to represent the term
that is obtained from X by substituting o for every occurrence of @this in X.

We call the above process “binding” because it is akin to late binding in tra-
ditional programming languages like C++. Recall from Section 3 that template
rules are just templates for the regular rules that are obtained via binding when
template rules are inherited. Therefore, satisfaction of template rules in a model
will have to be defined via satisfaction of their bindings. When an object inherits
template rules from a class, the bindings of these template rules with respect to
this object should be satisfied similarly to regular rules. However, because only
those template rules that are actually inherited need to be satisfied, satisfaction
of template rules depends on how they are inherited: strongly or weakly.

Definition 16 (Strong Code Inheritance). Let I be an interpretation of an
F-logic KB P and R≡code(c) @this[m → v] :− B a template rule in ground(P).
An object o strongly inherits R, if the following conditions hold:

(1) c[m] s.code
� I o;

(2) o[m] has neither strong nor weak explicit definitions;
(3) there is no x 
= c such that x[m] �I o.

In other words, strong code inheritance happens when there is a strong code
inheritance candidate, which is not overwritten and which does not have a rival
inheritance candidate of any kind.
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Definition 17 (Weak Code Inheritance). Let I be an interpretation of an
F-logic KB P and R≡code(c) @this[m → v] :− B a template rule in ground(P).
An object o weakly inherits R, if all of the following holds:

(1) c[m] s.code
� I o or c[m] w.code

� I o;
(2) o[m] has no strong explicit definitions;
(3) there is no x 
= c such that x[m] s.val

�I o or x[m] s.code
� I o;

(4) o does not strongly inherit R.

In other words, o weakly inherits R, if: c[m] is a code inheritance candidate for
o (strong or weak); o[m] has no strong explicit definitions; there are no other
strong conflicting inheritance candidates; and, of course, o does not strongly
inherit R.

For convenience, we define a function, imodeI , on the bindings of ground
template rules, which returns the “inheritance mode” of a binding:

imodeI(R‖o) =

⎧⎨
⎩

t, if o strongly inherits R;
u, if o weakly inherits R;
f , otherwise.

When imodeI(R‖o) = t, we will say that R‖o is in strong code inheritance mode.
Similarly, we will say R‖o is in weak code inheritance mode if imodeI(R‖o) = u.
Now we can extend the truth valuation function to template rules as follows.

Definition 18 (Truth Valuation of Template Rules). Let I be an inter-
pretation and R ≡ code(c) @this[m → v] :− B a ground template rule. The truth
valuation function I on R‖o is defined as follows:

I(R‖o) =

⎧⎪⎪⎨
⎪⎪⎩

t, if imodeI(R‖o) ≥ u and
I(o[m → v] c

code) ≥ min{Vb
I (B‖o), imodeI(R‖o)};

t, if imodeI(R‖o) = f and I(o[m → v] c
code) = f ;

f , otherwise.

For ground template facts of the form F ≡ code(c) @this[m → v], their truth val-
uation is defined similarly:

I(F‖o) =

⎧⎨
⎩

t, if imodeI(F‖o) ≥ u and I(o[m → v] c
code) ≥ imodeI(F‖o);

t, if imodeI(F‖o) = f and I(o[m → v] c
code) = f ;

f , otherwise.

Recall that atoms of the form o[m → v] c
code represent those facts that are derived

via code inheritance. Note that when imodeI(R‖o) = f , i.e., o does not inherit
R, it is required that I(o[m → v] c

code) = f in order for R‖o to be satisfied. This
means that if an object, o, does not inherit a template rule, then the binding of
that rule with respect to o should not be used to make inference.

Now the idea of template rule satisfaction and the notion of an object model
can be formalized as follows.
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Definition 19 (Template Rule Satisfaction). An interpretation I satisfies
the template rules of an F-logic KB P, if I(R‖o) = t for all template rule
R ∈ ground(P) and all o ∈ HUP.

Observe that in the event of strong code inheritance, imodeI(R‖o) = t and so
the truth valuation function on template rules reduces to that on regular rules.
Indeed, for template rules, we have from Definition 18 that I(R‖o) = t iff
I(o[m → v] c

code) ≥ min{Vb
I (B‖o), imodeI(R‖o)} = Vb

I (B‖o). A similar conclu-
sion can be drawn for template facts.

Definition 20 (Object Model). An interpretation I is called an object model
of an F-logic KB P if I satisfies:

– all the regular rules in P,
– all the template rules in P, and
– all the core inheritance postulates (including the positive ISA transitivity con-

straint, the context consistency constraint, and the unique source inheritance
constraint).

7 Computation

In this section we will define a series of operators, which will form the basis for
a bottom-up procedure for computing object models of F-logic KBs.

First we need to extend the definition of an interpretation in Section 4 to
include book-keeping information used by the computation. This book-keeping
information is cast out at the last stage when the final object model is produced.
The extended Herbrand base of an F-logic KB P, denoted ĤBP, consists of atoms
from HBP and auxiliary atoms of the forms c[m] val

� o and c[m] code
� o, where c, m,

and o are terms from HUP. During the computation, these auxiliary atoms
will be used to approximate value and code inheritance candidates (with which
they should not be confused). An extended atom set is a subset of ĤBP. In the
sequel, we will use symbols with a hat (e.g., Î ) to denote extended atom sets.
The projection of an extended atom set Î , denoted π( Î ), is Î with the auxiliary
atoms removed.

We will often need to compare a normal atom set with the projection of an
extended atom set. In such cases, when confusion does not arise, we will omit
the projection operator π.

It is easy to generalize the definitions of the truth valuation functions in
Section 4 to extended atom sets, since the auxiliary atoms do not occur in
F-logic KBs. Formally, given an extended atom set Î , let I = 〈π( Î ); ∅ 〉. We
define: (i) valh

�I (H) def= Vh
I (H), for a ground rule head H; (ii) valb

�I (B) def= Vb
I (B),

for a ground rule body B; (iii) val
�I (R) def= I(R), for a ground regular rule R;

and (iv) val
�I (R‖o)

def= I(R‖o), for a binding of a ground template rule R.
The computation model for F-logic KBs with regular and template rules was

inspired by the alternating fixpoint operator [42] and extends it. The new element
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here is the book-keeping mechanism, which is necessary for recording inheritance
information.

Definition 21. Given a ground literal L of an F-logic KB P and an atom
A ∈ HBP, we say that L matches A, if one of the following conditions is true:
(i) L = o : c and A = o : c; or (ii) L = s :: c and A = s :: c; or (iii) L = s[m → v]
and A = s[m → v]ex.

Definition 22 (Regular Rule Consequence). The regular rule consequence
operator, RCP,�I , is defined for an F-logic KB P and an extended atom set Î .

It takes as input an extended atom set, Ĵ , and generates a new extended atom
set, RCP,�I ( Ĵ ), as follows:⎧⎨

⎩A

∣∣∣∣∣∣
ground(P) has a regular rule, H :− L1, . . . , Ln, such that H matches
A and for every literal Li (1 ≤ i ≤ n): (i) if Li is positive, then
valb

�J (Li) = t; and (ii) if Li is negative, then valb
�I (Li) = t.

⎫⎬
⎭

The regular rule consequence operator is adopted from the usual alternating
fixpoint computation. It derives new facts, including class membership, subclass
relationship, and explicit method definitions for classes and objects, from the
regular rules in an F-logic KB.

Definition 23 (Inheritance Blocking). The inheritance blocking operator,
IBP, is defined for an F-logic KB P. It takes as input an extended atom set, Î ,
and generates the set, IBP( Î ), which is the union of the following sets of atoms.

Explicit inheritance conflicts:{
ec(o, m) | ∃ v such that o[m → v]ex ∈ Î

}
Multiple inheritance conflicts:{

mc(c, m, o)
∣∣∣∃ x 
= c such that x[m] val

� o ∈ Î or x[m] code
� o ∈ Î

}
Overriding inheritance conflicts:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ov(c, m, o)

∣∣∣∣∣∣∣∣∣∣

∃ x such that: (i) x 
= c, x 
= o, x :: c ∈ Î ,
o : x ∈ Î ; and (ii) ∃ v such that x[m → v]ex ∈ Î
or there is a template rule in ground(P) of the
form code(x) @this[m → . . .] :− . . . , which
specifies the instance method m for class x.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The inheritance blocking operator is an auxiliary operator used in defining the
template rule consequence operator and the inheritance consequence operator
below. It returns book-keeping information that is needed to determine inheri-
tance candidates.

Intuitively, ec(o, m) means method m is explicitly defined at o; mc(c, m, o)
means inheritance of method m from c to o is not possible due to a multiple



98 G. Yang and M. Kifer

inheritance conflict (because there is a value or a code inheritance candidate
other than c); ov(c, m, o) means inheritance of method m from c by o would be
overridden by another class that stands between o and c in the class hierarchy.
From Definition 23 we can see that a class must have a explicitly defined value
for a method or have an instance method definition to be able to override in-
heritance from its superclasses. The following lemmas follow directly from the
above definitions.

Lemma 3. Given an interpretation I = 〈T; U 〉 of an F-logic KB P:
(1) for all c, m, o: there is x such that x strongly overrides c[m] for o iff

ov(c, m, o) ∈ IBP(T).
(2) for all c, m, o: there is x such that x strongly or weakly overrides c[m]

for o iff ov(c, m, o) ∈ IBP(T ∪ U).

Lemma 4. Given an interpretation I = 〈T; U 〉 of an F-logic KB P:

(1) for all c, m, o: c[m] s.val
�I o iff (i) c 
= o, o : c ∈ T; (ii) c[m → v]ex ∈ T

for some v; and (iii) ov(c, m, o) /∈ IBP(T ∪ U).
(2) for all c, m, o: c[m] s.code

� I o iff (i) c 
= o, o : c ∈ T; (ii) there is a
template rule in ground(P) which specifies the instance method m for
class c; and (iii) ov(c, m, o) /∈ IBP(T ∪ U).

(3) for all c, m, o: c[m] s.val
�I o or c[m] w.val

� I o iff (i) c 
= o, o : c ∈ T ∪ U;
(ii) c[m → v]ex ∈ T ∪ U for some v; and (iii) ov(c, m, o) /∈ IBP(T).

(4) for all c, m, o: c[m] s.code
� I o or c[m] w.code

� I o iff (i) c 
= o, o : c ∈ T ∪ U;
(ii) there is a template rule in ground(P) which specifies the instance
method m for class c; and (iii) ov(c, m, o) /∈ IBP(T).

(5) for all c, m, o: c[m]�I o iff (i) c 
= o, o : c ∈ T ∪ U; (ii) there is a
template rule in ground(P) which specifies the instance method m for
class c or c[m → v]ex ∈ T∪U for some v; and (iii) ov(c, m, o) /∈IBP(T).

Definition 24 (Template Rule Consequence). The template rule conse-
quence operator, TCP,�I , is defined for an F-logic KB P and an extended atom

set Î . It takes as input an extended atom set, Ĵ , and generates a new extended
atom set, TCP,�I ( Ĵ ), as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

o[m → v] c
code

∣∣∣∣∣∣∣∣∣∣∣

c[m] code
� o ∈ Ĵ , ec(o, m) /∈ IBP( Î ), mc(c, m, o) /∈ IBP( Î );

ground(P) has a template rule code(c) @this[m → v] :− B
and for every literal L ∈ B‖o:

(i) if L is positive, then valb
�J (L) = t, and

(ii) if L is negative, then valb
�I (L) = t.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The template rule consequence operator is used to derive new facts as a re-
sult of code inheritance. It is similar to the regular rule consequence operator
except that the regular rule consequence operator is applied to all regular rules
whereas the template rule consequence operator is applied only to those selected
template rules that could be inherited according to our inheritance semantics.
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Given an object o and a template rule, code(c) @this[m → v] :− B, which
defines instance method m for class c, we first need to decide whether o can
inherit this instance method definition from c. If so, then we will bind this
instance method definition for o and evaluate it (note that B‖o is obtained from
B by substituting o for every occurrence of @this in B). If the rule body is
satisfied in the context of o, we will derive o[m → v] c

code to represent the fact
that m → v is established for o by inheritance of an instance method definition
from c.

We can decide whether object o can inherit the definitions of instance method
m from class c by looking up the two sets Ĵ and IBP( Î ). In particular, such code
inheritance can happen only if the following conditions are true: (i) c[m] is a
code inheritance candidate for o (c[m] code

� o ∈ Ĵ ); (ii) method m is not explicitly
defined at o (ec(o, m) /∈ IBP( Î )); and (iii) there is no multiple inheritance
conflict (mc(c, m, o) /∈ IBP( Î )).

Definition 25 (Inheritance Consequence). The inheritance consequence
operator, ICP,�I , where P is an F-logic KB and Î is an extended atom set,

takes as input an extended atom set, Ĵ , and generates a new extended atom set
as follows:

ICP,�I ( Ĵ ) def= ICt ( Ĵ ) ∪ ICc
P,�I ( Ĵ ) ∪ ICi

P,�I ( Ĵ ), where

ICt( Ĵ ) =
{

o : c
∣∣∣∃ x such that o : x ∈ Ĵ , x :: c ∈ Ĵ

}
∪{

s :: c
∣∣∣ ∃ x such that s :: x ∈ Ĵ , x :: c ∈ Ĵ

}

ICc
P,�I ( Ĵ ) =

{
c[m] val

� o
∣∣∣∣ o : c ∈ Ĵ , c 
= o, c[m → v]ex ∈ Ĵ , and
ov(c, m, o) /∈ IBP( Î )

}
∪⎧⎨

⎩c[m] code
� o

∣∣∣∣∣∣
o : c ∈ Ĵ , c 
= o, there is a template rule in
ground(P) which specifies the instance method m
for class c, and ov(c, m, o) /∈ IBP( Î )

⎫⎬
⎭

ICi
P,�I ( Ĵ ) =

{
o[m → v] c

val

∣∣∣∣ c[m] val
� o ∈ Ĵ , c[m → v]ex ∈ Ĵ ,

ec(o, m) /∈ IBP( Î ), and mc(c, m, o) /∈ IBP( Î )

}

The inheritance consequence operator, ICP,�I , is the union of three operators:
ICt , ICc

P,�I , and ICi
P,�I . The operator ICt is used to perform transitive closure of

the class hierarchy, including class membership and subclass relationship. Value
and code inheritance candidates are computed by the operator ICc

P,�I , which

relies on the overriding information provided by IBP( Î ). Finally, the operator
ICi

P,�I derives new facts by value inheritance. This operator also relies on the

information provided by IBP( Î ).
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Definition 26 (KB Completion). The KB completion operator, TP,�I , where

P is an F-logic KB and Î an extended atom set, takes as input an extended atom
set, Ĵ , and generates a new extended atom set as follows:

TP,�I ( Ĵ ) def= RCP,�I ( Ĵ ) ∪ TCP,�I ( Ĵ ) ∪ ICP,�I ( Ĵ )

The KB completion operator is the union of the regular rule consequence oper-
ator, the template rule consequence operator, and the inheritance consequence
operator. It derives new “explicit” method definitions (via regular rules in the
KB), new inherited facts (by value and code inheritance), plus inheritance can-
didacy information that is used to decide which facts to inherit in the future.

We have the following lemma regarding the monotonicity property of the
operators that we have defined so far.

Lemma 5. Suppose P and Î are fixed. Then the following operators are mono-
tonic: RCP,�I , IBP, TCP,�I , ICt , ICc

P,�I , ICi
P,�I , ICP,�I , TP,�I .

Given an F-logic KB P, the set of all subsets of the extended Herbrand base
ĤBP constitutes a complete lattice where the partial ordering is defined by set
inclusion. Therefore, any monotonic operator, Φ, defined on this lattice has a
unique least fixpoint lfp(Φ) [28].

Definition 27 (Alternating Fixpoint). The alternating fixpoint operator, ΨP,
for an F-logic KB P takes as input an extended atom set, Î , and generates a new
extended atom set as follows: ΨP( Î ) def= lfp(TP,�I ).

Definition 28 (F-logic Fixpoint). The F-logic fixpoint operator, FP, where
P is an F-logic KB, takes as input an extended atom set, Î , and generates a new
extended atom set as follows: FP( Î ) def= ΨP(ΨP( Î )).

Lemma 6. Let Î be an extended atom set of an F-logic KB P, Ĵ = ΨP( Î ).
Then:

(1) for all c, m, o: if c[m] val
� o ∈ Ĵ then c 
= o.

(2) for all c, m, o: if c[m] code
� o ∈ Ĵ then c 
= o.

(3) for all o, m, v, c: o[m → v] c
val ∈ Ĵ iff o[m → v] c

val ∈ ICi
P,�I ( Ĵ ).

(4) for all o, m, v, c: o[m → v] c
code ∈ Ĵ iff o[m → v] c

code ∈ TCP,�I ( Ĵ ).

(5) for all o, m, v, c: if o[m → v] c
val ∈ Ĵ then c 
= o.

(6) for all o, m, v, c: if o[m → v] c
code ∈ Ĵ then c 
= o.

Lemma 7. ΨP is antimonotonic when P is fixed.

Lemma 8. FP is monotonic when P is fixed.
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8 Stable Object Models

Although the inheritance postulates rule out a large number of unintended inter-
pretations of F-logic KBs, they still do not restrict object models tightly enough.
There can be unfounded object models that do not match the common intuition
behind inference. This problem is illustrated with the following example.

o

c1[m−>a]

c2[m−>b]

o : c1.
c2 :: c1.
c1[m → a].
c2[m → b].
o : c2 :− o[m → b].

Fig. 8. Unfounded Inference

Example 2. Consider the KB in Figure 8 and the following two-valued object
model I = 〈T; ∅ 〉, where

T = {o : c1, c2 :: c1, o : c2, c1[m → a]ex, c2[m → b]ex, o[m → b] c2
val}.

Clearly, I satisfies the regular rules of the KB in Figure 8 and all the inheritance
postulates introduced in Section 5. However, we should note that in I the truth
of o : c2 and o[m → b] c2

val is not well-founded. Indeed, the truth of o : c2 depends
on o[m → b] being satisfied in the body of the last rule. Since o[m → b] does not
appear in the head of any rule, there is no way for m → b to be explicitly defined
for o. So the satisfaction of o[m → b] depends on o inheriting m → b from c2,
since c2 is the only class that has an explicit definition for m → b. However, o can
inherit m → b from c2 only if the truth of o : c2 can be established first. We see
that the inferences of o : c2 and o[m → b] c2

val depend on each other like chicken
and egg. Therefore, we should not conclude that both o : c2 and o[m → b] c2

val are
true as implied by the KB and our semantics for inheritance.

To overcome the problem, we will introduce a special class of stable object mod-
els, which do not exhibit the aforementioned anomaly.

Definition 29. Given an interpretation I = 〈T; U 〉 of an F-logic KB P, let T̂I
be the extended atom set constructed by augmenting T with the set of auxiliary
atoms corresponding to the strong inheritance candidates in I. Let ÛI be the
extended atom set constructed by augmenting T ∪ U with the set of auxiliary
atoms corresponding to the strong and weak inheritance candidates in I. More
precisely, we define T̂I

def= T ∪ A, ÛI
def= T ∪ U ∪ B, where

A = {c[m] val
� o | c[m] s.val

�I o} ∪ {c[m] code
� o | c[m] s.code

� I o}
B = {c[m] val

� o | c[m] s.val
�I o or c[m] w.val

� I o} ∪
{c[m] code

� o | c[m] s.code
� I o or c[m] w.code

� I o}
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Definition 30 (Stable Interpretation). Let I = 〈T; U 〉 be an interpretation
of an F-logic KB P. I is called a stable interpretation of P, if T̂I = ΨP(ÛI) and
ÛI = ΨP(T̂I).

Our definition of stable interpretations is closely related to that of stable models
introduced in [16,35]. The idea is that given an interpretation I of an F-logic KB
P, we first resolve all negative premises using the information in I. The result is
a residual positive KB without negation. Then I is said to be stable if and only
if I can reproduce itself via the least fixpoint computation over the residual KB.
This is how stable interpretations can prevent the kind of unfounded inference
illustrated in Example 2.

We should note that Definition 30 only requires that a stable interpretation
I = 〈T; U 〉 satisfy a certain computational property with respect to ΨP, i.e.,
T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I). In fact, it turns out that a stable interpretation
of an F-logic KB P satisfies all the regular rules and template rules in P as well
as all the core and cautious inheritance postulates.

Theorem 1. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I is an object model of P. Moreover, I satisfies the cautious ISA transitivity
constraint and the cautious inheritance constraint.

Proof. By Definition 20, and by Propositions 1, 2, 3, 4, 5, 6, and 7.

Since, by Theorem 1, stable interpretations satisfy all the requirements for object
models, we will start referring to stable interpretations as stable object models.

There is an interesting correspondence between stable object models and fix-
points of FP. On one hand, it can be easily seen that stable object models are
essentially fixpoints of FP. Let I = 〈T; U 〉 be a stable object model of an F-logic
KB P. Then T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I), by Definition 30. It follows that
T̂I = ΨP(ÛI) = ΨP(ΨP(T̂I)) = FP(T̂I) and so T̂I is a fixpoint of FP. Similarly,
ÛI is also a fixpoint of FP. Moreover, T̂I ⊆ ÛI by Definition 29.

The following theorem shows that stable object models can be constructed
using certain fixpoints of FP.

Theorem 2. Let P be an F-logic KB, Ĵ a fixpoint of FP, K̂ = ΨP( Ĵ ), and
Ĵ ⊆ K̂ . Then I = 〈π( Ĵ ); π( K̂ ) − π( Ĵ ) 〉, where π is the projection function
defined in Section 7, is a stable object model of P.

Proof. Let T = π( Ĵ ) and U = π( K̂ ) − π( Ĵ ). Thus I = 〈T; U 〉. Since Ĵ ⊆ K̂ ,
it follows that π( Ĵ ) ⊆ π( K̂ ), and so T ∪ U = π( K̂ ). To show that I is a stable
object model of P, we need to establish that T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I).
Since Ĵ is a fixpoint of FP and K̂ = ΨP( Ĵ ), it follows that Ĵ=ΨP( K̂ ), by
Definition 28. Therefore, if we can show that T̂I = Ĵ and ÛI = K̂ , then it
follows that I is a stable object model of P.

Since Ĵ = ΨP( K̂ ) = lfp(TP, �K ) and K̂ = ΨP( Ĵ ) = lfp(TP,�J ), we can derive
the following equations, by Definitions 26 and 25:

Ĵ = RCP, �K ( Ĵ ) ∪ TCP, �K ( Ĵ ) ∪ ICt( Ĵ ) ∪ ICc
P, �K ( Ĵ ) ∪ ICi

P, �K ( Ĵ )
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K̂ = RCP,�J ( K̂ ) ∪ TCP,�J ( K̂ ) ∪ ICt( K̂ ) ∪ ICc
P,�J ( K̂ ) ∪ ICi

P,�J ( K̂ )

First we will show that for all c, m, o: c[m] val
� o ∈ Ĵ iff c[m] s.val

�I o. Indeed,
c[m] val

� o ∈ Ĵ , iff c[m] val
� o ∈ ICc

P, �K ( Ĵ ), iff c 
= o, o : c ∈ Ĵ , c[m → v]ex ∈ Ĵ

for some v, and ov(c, m, o) /∈ IBP( K̂ ), by Definition 25, iff c 
= o, o : c ∈ π( Ĵ ),
c[m → v]ex ∈ π( Ĵ ) for some v, and ov(c, m, o) /∈ IBP(π( K̂ )), iff c 
= o, o : c ∈ T,
c[m → v]ex ∈ T for some v, and ov(c, m, o) /∈ IBP(T ∪ U), iff c[m] s.val

�I o, by
Lemma 4. Similarly, we can also show that (i) for all c, m, o: c[m] code

� o ∈ Ĵ iff
c[m] s.code

� I o; and (ii) for all c, m, o: c[m] val
� o ∈ K̂ or c[m] code

� o ∈ K̂ iff c[m] �I o.
Therefore, it follows that T̂I = Ĵ and ÛI = K̂ by Definition 29. This completes
the proof.

It is worth pointing out that the condition Ĵ ⊆ K̂ in Theorem 2 is not necessary
for constructing a stable object model out of the extended sets Ĵ and K̂ . In
fact, the following example shows that there is an F-logic KB P such that Ĵ is
a fixpoint of FP, K̂ = ΨP( Ĵ ), and Ĵ � K̂ , but I = 〈π( Ĵ ); π( K̂ ) − π( Ĵ ) 〉 is a
stable object model of P.

o

c1[m−>a]

c2[m−>b] o : c1.
c1[m → a].
c1 :: c2 :− c2[m → b].
c2[m → b] :− ¬ c1 :: c2.
c1 :: c2 :− o[m → a].
c2[m → b] :− o[m → a].

Fig. 9. Constructive Fixpoints

Example 3. Consider the F-logic KB P in Figure 9 and the following two ex-
tended sets Ĵ and K̂ :

Ĵ = {o : c1, c1[m → a]ex, o[m → a] c1
val, c1 :: c2, c2[m → b]ex} ∪

{c1[m] val
� o, c2[m] val

� o}
K̂ = {o : c1, c1[m → a]ex} ∪ {c1[m] val

� o}

One can verify that Ĵ = ΨP( K̂ ), K̂ = ΨP( Ĵ ), and so Ĵ is a fixpoint of
ΨP. Moreover, π( Ĵ ) = {o : c1, c1[m → a]ex, o[m → a] c1

val, c1 :: c2, c2[m → b]ex},
π( K̂ )−π( Ĵ ) = ∅. We can also verify that I = 〈π( Ĵ ); π( K̂ )−π( Ĵ ) 〉 is a stable
object model of P. But clearly Ĵ − K̂ 
= ∅. Thus Ĵ � K̂ .

Another interesting question is whether we can always construct stable object
models of an F-logic KB P from fixpoints of ΨP. The answer turns out to be no.
The following example shows that some F-logic KBs may have fixpoints from
which we cannot even construct an object model for that KB.
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o2o1

c2c1
o1 : c1.
o2 : c2.
c1[m → a] :− ¬ o1[m → a].
c2[m → b] :− ¬ o2[m → b].
c2[m → c] :− o1[m → a], o2[m → b].

Fig. 10. Nonconstructive Fixpoints

Example 4. Consider the F-logic KB P in Figure 10 and the following two ex-
tended sets Ĵ and K̂ :

Ĵ = {o1 : c1, o2 : c2, c1[m → a]ex, o1[m → a] c1
val} ∪ {c1[m] val

� o1}
K̂ = {o1 : c1, o2 : c2, c2[m → b]ex, o2[m → b] c2

val} ∪ {c2[m] val
� o2}

One can verify that Ĵ = ΨP( K̂ ), K̂ = ΨP( Ĵ ), and so Ĵ is a fixpoint of ΨP.
However,

π( Ĵ ) = {o1 : c1, o2 : c2, c1[m → a]ex, o1[m → a] c1
val}

π( K̂ ) − π( Ĵ ) = {c2[m → b]ex, o2[m → b] c2
val}

It is easy to check that the interpretation I = 〈π( Ĵ ); π( K̂ )−π( Ĵ ) 〉 is not even
an object model of P, because I does not satisfy the KB in Figure 10, namely,
the last rule of the KB in Figure 10. But if we remove the last rule from the KB
in Figure 10 then I would be an object model of this new KB, but not a stable
object model.

9 Cautious Object Models

Here we introduce a special class of stable object models, called cautious object
model. These models have an important property that every F-logic KB has a
unique cautious object model. This notion relates stable object models and the
fixpoint computation of FP. Recall that FP

def= ΨP · ΨP is monotonic and hence
has a unique least fixpoint, denoted lfp(FP).

Definition 31 (Cautious Object Model). The cautious object model, M, of
an F-logic KB P is defined as follows: M = 〈T; U 〉, where

T = π(lfp(FP))
U = π(ΨP(lfp(FP))) − π(lfp(FP))

and π is the projection function defined in Section 7.

Next we will list several important properties of cautious object models. First
we need to introduce the notations used for representing the intermediate results
of the least fixpoint computation of ΨP and FP.
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Definition 32. Let α range over all countable ordinals. We define the following
extended atom sets for an F-logic KB P:

T̂0 = ∅ Û0 = ΨP(T̂0) for limit ordinal 0

T̂α = ΨP(Ûα−1) Ûα = ΨP(T̂α) for successor ordinal α

T̂α =
⋃

β<α

T̂β Ûα = ΨP(T̂α) for limit ordinal α 
= 0

T̂∞ =
⋃
α

T̂α Û∞ = ΨP(T̂∞)

Lemma 9. Let α and β range over all countable ordinals. Then:
(1) for all α, β: if α < β then T̂α ⊆ T̂β

(2) T̂∞ = lfp(FP)
(3) for all α: T̂α ⊆ T̂∞
(4) Û∞ = gfp(FP)
(5) for all α: Ûα ⊇ Û∞
(6) for all α, β: if α < β then Ûα ⊇ Ûβ

(7) for all α: T̂α ⊆ Ûα

(8) for all α, β: T̂α ⊆ Ûβ

From Definition 31, Lemma 9, and from the definition of the projection function
π in Section 7, we obtain a new characterization of the cautious object model.

Lemma 10. If M is the cautious object model of an F-logic KB P then

M = 〈π(T̂∞); π(Û∞) − π(T̂∞) 〉 = 〈π(T̂∞); π(Û∞ − T̂∞) 〉

Let α be a countable ordinal. Given a pair of extended atom sets T̂α and Ûα, we
know that T̂α ⊆ Ûα and so π(T̂α) ⊆ π(Ûα) by Lemma 9. We can construct an in-
terpretation Iα as follows: Iα = 〈π(T̂α); π(Ûα)−π(T̂α) 〉. Then the set of atoms
c[m] val

� o (c[m] code
� o) in T̂α constitutes a subset of the set of strong value (code)

inheritance candidates in Iα, whereas the set of atoms c[m] val
� o (c[m] code

� o) in
Ûα constitutes a superset of the set of strong and weak value (code) inheritance
candidates in Iα. In other words, T̂α underestimates inheritance information
whereas Ûα overestimates inheritance information. The following lemma illus-
trates this book-keeping mechanism of the alternating fixpoint computation.

Lemma 11. Let Iα = 〈π(T̂α); π(Ûα) − π(T̂α) 〉 where α ranges over all count-
able ordinals. Then the following statements are true:

(1) for all c, m, o: if c[m] val
� o ∈ T̂α then c[m] s.val

�Iα o
(2) for all c, m, o: if c[m] code

� o ∈ T̂α then c[m] s.code
� Iα o

(3) for all c, m, o: if c[m] s.val
�Iα o or c[m] w.val

� Iα o then c[m] val
� o ∈ Ûα

(4) for all c, m, o: if c[m] s.code
� Iα o or c[m] w.code

� Iα o then c[m] code
� o ∈ Ûα
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Lemma 12. Let M be the cautious object model of an F-logic KB P. Then the
following statements are true:

(1) for all c, m, o: c[m] s.val
�M o iff c[m] val

� o ∈ T̂∞
(2) for all c, m, o: c[m] s.code

� M o iff c[m] code
� o ∈ T̂∞

(3) for all c, m, o: c[m] s.val
�M o or c[m] w.val

�M o iff c[m] val
� o ∈ Û∞

(4) for all c, m, o: c[m] s.code
� M o or c[m] w.code

� M o iff c[m] code
� o ∈ Û∞

The lemma above says that T̂∞ includes exactly all the strong inheritance candi-
dates while Û∞ includes exactly all the strong and weak inheritance candidates
in M. This essentially implies that the cautious object model is indeed a stable
object model.

Theorem 3. The cautious object model M of an F-logic KB P is a stable object
model of P.

Proof. Let M = 〈T; U 〉 be the cautious object model of P. Then T = π(T̂∞)
and U = π(Û∞) − π(T̂∞). So by Definition 29 and Lemma 12, T̂M = T̂∞ and
ÛM = Û∞. Moreover, Û∞ = ΨP(T̂∞) and T̂∞ = ΨP(Û∞) by Definition 32 and
Lemma 9. It follows that T̂M = ΨP(ÛM) and ÛM = ΨP(T̂M). Therefore, M is
a stable interpretation and thus a stable object model of P.

c2

o[f−>x]

c1[m−>a]
o : c1.
c2 :: c1.
o : c2 :− o[m → a].
o[f → x].
c1[m → a].

code(c2) @this[m → b] :− @this[f → x].

Fig. 11. Computation of Cautious Object Models

Example 5. We illustrate the computation of cautious object models using the
F-logic KB P in Figure 11. First let T and U denote the following sets of atoms:

T = {o : c1, c2 :: c1, o[f → x]ex, c1[m → a]ex}
U = {o : c2, o[m → a] c1

val, o[m → b] c2
code}

Then the computation process of ΨP is as follows:

T̂0 = ∅
T̂1 = ΨP(T̂0) = T ∪ U ∪ {c1[m] val

� o, c2[m] code
� o}

T̂2 = ΨP(T̂1) = T
T̂3 = ΨP(T̂2) = T̂1

T̂4 = ΨP(T̂3) = T̂2

Therefore, lfp(FP) = T̂2 and ΨP(lfp(FP)) = T̂1, and so the cautious object
model of the KB in Figure 11 is 〈T; U 〉.
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Theorem 3 gives a procedural characterization of the cautious object model,
i.e., it is essentially defined as the least fixpoint of the extended alternating
fixpoint computation. Next we will present two additional characterizations of
the cautious object model semantics.

First, by comparing the amount of “definite” information, i.e., truth and false-
hood, that is contained in different stable object models of an F-logic KB P,
we can define a partial order, called information ordering, among stable object
models.

Definition 33 (Information Ordering). Let I1 = 〈P1; Q1 〉, I2 = 〈P2; Q2 〉
be two stable object models of an F-logic KB P, R1 = HBP − (P1 ∪ Q1),
R2 = HBP − (P2 ∪ Q2). The information ordering on object models is defined
as follows: I1 � I2 iff P1 ⊆ P2 and R1 ⊆ R2.

Intuitively, a stable object model is “smaller” in the information ordering, if it
contains fewer true facts and fewer false facts. Therefore, the least stable object
model contains the smallest set of true atoms and the smallest set of false atoms
among all stable object models.

Definition 34 (Least Stable Object Model). Let I be a stable object model
of an F-logic KB P. I is the least stable object model of P, if I � J for any
stable object model J of P.

Theorem 4. The cautious object model M of an F-logic KB P is the least
stable object model of P.

Proof. Let I = 〈T; U 〉 be any stable object model of P. We need to show that
M � I. Recall that M = 〈π(T̂∞); π(Û∞) − π(T̂∞) 〉. Therefore, to show that
M � I, it suffices to show that π(T̂∞) ⊆ T and π(Û∞) ⊇ T ∪ U. Since I
is a stable object model of P, it follows that T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I).
Therefore, T̂I = ΨP(ÛI) = ΨP(ΨP(T̂I)) = FP(T̂I) and so T̂I is a fixpoint of FP.
Similarly, ÛI is also a fixpoint of FP. But T̂∞ = lfp(FP) and Û∞ = gfp(FP), by
Lemma 9. It follows that T̂∞ ⊆ T̂I and Û∞ ⊇ ÛI . Thus π(T̂∞) ⊆ π(T̂I) and
π(Û∞) ⊇ π(ÛI). Moreover, π(T̂I) = T and π(ÛI) = T ∪ U, by Definition 29.
So π(T̂∞) ⊆ T and π(Û∞) ⊇ T ∪ U.

Besides comparing different models of a KB with respect to information ordering,
it is also common to compare different models based on the amount of “truth”
contained in the models. Typically, the true component of a model is minimized
and the false component maximized. However, in F-logic we also need to deal
with inheritance, which complicates the matters a bit, because some facts may
be derived via inheritance. As a consequence, there are object models that look
similar but are actually incomparable. This leads to the following definition
of truth ordering among object models, which minimizes not only the set of
true atoms of an object model, but also the amount of positive inheritance
information implied by the object model.
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Definition 35 (Truth Ordering). Let I1 = 〈P1; Q1 〉 and I2 = 〈P2; Q2 〉 be
two object models of an F-logic KB P. We write I1 ≤ I2 iff

(1) P1 ⊆ P2; and
(2) P1 ∪ Q1 ⊆ P2 ∪ Q2; and
(3) for all c, m, o: c[m] s.val

�I1 o implies c[m] s.val
�I2 o; and

(4) for all c, m, o: c[m] s.code
� I1 o implies c[m] s.code

� I2 o.

Definition 36 (Minimal Object Model). An object model I is minimal iff
there exists no object model J such that J ≤ I and J 
= I.

The above definitions minimize the number of strong inheritance candidates
implied by an object model in addition to the usual minimization of truth and
maximization of falsehood. This is needed because increasing the number of false
facts might inflate the number of strong inheritance candidates, which in turn
might unjustifiably inflate the number of facts that are derived by inheritance.

c3[m−>b]

o

c1[m−>a]

c2

o : c1.
o : c2.
c2 :: c3.
c1[m → a].
c3[m → b].
c2[m → c] :− o[m → a].

Fig. 12. Minimal Object Model

Example 6. Consider the KB in Figure 12 and the following two object models
of the KB: I1 = 〈P1; Q1 〉, where

P1 = {o : c1, o : c2, c2 :: c3, c1[m → a]ex, c3[m → b]ex}
Q1 = ∅

and I2 = 〈P2; Q2 〉, where

P2 = P1

Q2 = {o[m → a] c1
val, c2[m → c]ex}

I1 and I2 both agree on the atoms that are true. But in I1 both o[m → a] c1
val and

c2[m → c]ex are false, whereas in I2 they are both underdefined. Clearly, I1 has
more false atoms than I2 and so with the usual notion of minimality we would say
I1 ≤ I2. However, I1 is not as “tight” as it appears, because the additional false
atoms in I1 are not automatically implied by the KB under our cautious object
model semantics. Indeed, although c3[m] is a strong value inheritance candidate
for o in I1, it is only a weak value inheritance candidate in I2. We can see that
it is due to this spurious positive information about inheritance candidates that
I1 can have additional false atoms (compared to I2) while the sets of the true
atoms in these interpretations can remain the same. This anomaly is eliminated
by the inheritance minimization built into Definition 35, which renders the two
models incomparable, i.e., I1 
≤ I2.
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Theorem 5. The cautious object model M of an F-logic KB P is minimal
among those object models of P that satisfy the cautious ISA transitivity con-
straint and the cautious inheritance constraint.

Proof. This proof is long and is relegated to Section A.2 of the Appendix.

10 Implementation

It turns out that the (unique) cautious object model of an F-logic KB P can
be computed as the well-founded model of a certain general logic program with
negation, which is obtained from P via rewriting. Before describing the rewriting
procedure we first define a rewriting function that applies to all regular rules and
template rules.

Definition 37. Given an F-logic KB P and a literal L in P, the functions ρh

and ρb that rewrite head and body literals in P are defined as follows:

ρh(L) =

��
�

isa(o, c), if L = o : c
sub(s, c), if L = s :: c
exmv(s,m, v), if L = s[m → v]

ρb(L) =

����
���

isa(o, c), if L = o : c
sub(s, c), if L = s :: c
mv(o, m, v), if L = o[m → v]
¬ (ρb(G)), if L = ¬ G

The rewriting function ρ on regular rules and template rules in P is defined as
follows:

ρ(H :− L1, . . . , Ln) = ρh(H) :− ρb(L1), . . . , ρb(Ln)

ρ(code(c) @this[m → v] :− L1, . . . , Ln) = ins(O, m, v, c) :− ρb(B1), . . . , ρb(Bn)

where O is a new variable that does not appear in P and, each Bi = (Li)‖O, i.e.,
Bi is obtained from Li by substituting O for all occurrences of the template term
@this. The predicates, isa, sub, exmv, mv, and ins, are auxiliary predicates
introduced by the rewriting.

Note that since literals in rule heads and bodies have different meanings, they
are rewritten differently. Moreover, literals in the heads of regular rules and
template rules are also rewritten differently. The rewriting procedure that trans-
forms F-logic KBs into general logic programs is defined next.

Definition 38 (Well-Founded Rewriting). The well-founded rewriting of an
F-logic KB P, denoted Pwf , is a general logic program constructed by the fol-
lowing steps:

(1) For every regular rule R in P, add its rewriting ρ(R) into Pwf ;
(2) For every template rule R in P, which specifies an instance method m

for a class c, add its rewriting ρ(R) into Pwf . Moreover, add a fact
codedef(c, m) into Pwf ;

(3) Include the trailer rules shown in Figure 13 to Pwf (note that uppercase
letters denote variables in these trailer rules).
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mv(O,M, V) :− exmv(O,M, V).
mv(O,M, V) :− vamv(O,M, V, C).
mv(O,M, V) :− comv(O,M, V, C).

sub(S, C) :− sub(S,X), sub(X, C).
isa(O, C) :− isa(O,S), sub(S,C).

vamv(O,M, V, C) :− vacan(C, M, O), exmv(C,M, V), ¬ ex(O,M), ¬ multi(C, M, O).
comv(O, M, V, C) :− cocan(C, M, O), ins(O, M, V, C), ¬ ex(O,M), ¬ multi(C, M, O).

vacan(C, M, O) :− isa(O,C), exmv(C,M, V), C 
= O, ¬ override(C, M, O).
cocan(C, M, O) :− isa(O,C), codedef(C, M), C 
= O, ¬ override(C,M, O).

ex(O,M) :− exmv(O,M, V).
multi(C, M, O) :− vacan(X, M, O), X 
= C.
multi(C, M, O) :− cocan(X, M, O), X 
= C.

override(C,M, O) :− sub(X, C), isa(O,X), exmv(X,M, V), X 
= C, X 
= O.
override(C,M, O) :− sub(X, C), isa(O,X), codedef(X, M), X 
= C, X 
= O.

Fig. 13. Trailer Rules for Well-Founded Rewriting

Note that while rewriting an F-logic KB into a general logic program, we
need to output facts of the form codedef(c, m) to remember that there is a
template rule specifying instance method m for class c. Such facts are used to
derive overriding and code inheritance candidacy information.

There is a unique well-founded model for any general logic program [15].
Next we will present a characterization of well-founded models based on the
alternating fixpoint computation introduced in [42]. Given any general logic
program P, we will use HBP to denote the Herbrand base of P, which consists of
all possible atoms constructed using the predicate symbols and function symbols
in P.

Definition 39. Let P be a general logic program and I a subset of HBP. The
operator CP,I takes as input a set of atoms, J, and generates another set of
atoms, CP,I(J) ⊆ HBP, as follows:⎧⎨

⎩H

∣∣∣∣∣∣
There is H :− A1, . . . ,Am, ¬B1, . . . ,¬Bn ∈ ground(P), m ≥ 0,
n ≥ 0, Ai (1 ≤ i ≤ m) and Bj (1 ≤ j ≤ n) are positive literals, and
Ai ∈ J for all 1 ≤ i ≤ m, Bj /∈ I for all 1 ≤ j ≤ n.

⎫⎬
⎭

Lemma 13. CP,I is monotonic when P and I are fixed.

It follows that CP,I has a unique least fixpoint. Having defined CP,I we can
introduce two more operators, SP and AP, as follows.

Definition 40. Let P be a general logic program and I be a subset of HBP.
Then: SP(I) def= lfp(CP,I), AP(I) def= SP(SP(I)).

Lemma 14. SP is antimonotonic and AP is monotonic when P is fixed.

It follows that AP has a unique least fixpoint, denoted lfp(AP). The following
lemma from [42] explains how well-founded models can be defined in terms of
alternating fixpoints.
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Lemma 15. The well-founded model, 〈T; U 〉, of a general logic program P,
where T is the set of atoms that are true and U is the set of atoms that are under-
defined, can be computed as follows: T = lfp(AP), U = SP(lfp(AP)) − lfp(AP).

Given the well-founded rewriting, Pwf , of an F-logic KB P, the Herbrand base
of Pwf , denoted HBPwf , consists of atoms of the following forms: isa/2, sub/2,
exmv/3, vamv/4, ins/4, codedef/2, comv/4, mv/3, vacan/3, cocan/3, ex/2,
multi/3, and override/3. We can establish an isomorphism between interpreta-
tions of Pwf and P as follows.

Definition 41 (Isomorphism). Let Pwf be the well-founded rewriting of an
F-logic KB P, HBPwf the Herbrand base of Pwf , ĤBP the extended Herbrand
base of P, Iwf a subset of HBPwf , and Î a subset of ĤBP. We will say that Iwf

is isomorphic to Î , if all of the following conditions hold:
(1) for all o, c: isa(o, c) ∈ Iwf iff o : c ∈ I
(2) for all s, c: sub(s, c) ∈ Iwf iff s :: c ∈ I
(3) for all s, m, v: exmv(s, m, v) ∈ Iwf iff s[m → v]ex ∈ I
(4) for all o, m, v, c: vamv(o, m, v, c) ∈ Iwf iff o[m → v] c

val ∈ I
(5) for all o, m, v, c: comv(o, m, v, c) ∈ Iwf iff o[m → v] c

code ∈ I
(6) for all c, m, o: vacan(c, m, o) ∈ Iwf iff c[m] val

� o ∈ Î
(7) for all c, m, o: cocan(c, m, o) ∈ Iwf iff c[m] code

� o ∈ Î
(8) for all o, m: ex(o, m) ∈ Iwf iff ec(o, m) ∈ IBP( Î )
(9) for all c, m, o: multi(c, m, o) ∈ Iwf iff mc(c, m, o) ∈ IBP( Î )

(10) for all c, m, o: override(c, m, o) ∈ Iwf iff ov(c, m, o) ∈ IBP( Î )
Let Mwf be the well-founded model of Pwf and M the cautious object model of
P, Mwf = 〈Twf ; Uwf 〉, M = 〈π(T̂∞); π(Û∞ − T̂∞) 〉. We will say that Mwf

is isomorphic to M, if Twf and Uwf are isomorphic to T̂∞ and Û∞ − T̂∞,
respectively.

Note that the definition above includes atoms which are not in any interpreta-
tion of an F-logic KB P. However, if we can show that the well-founded model
of Pwf is isomorphic (according to the above definition) to the cautious ob-
ject model M of P, we can then establish a one-to-one correspondence between
isa(o, c) ∈ Mwf and o : c ∈ M, between sub(s, c) ∈ Mwf and s :: c ∈ M, between
exmv(s, m, v) ∈ Mwf and s[m → v]ex ∈ M, between comv(o, m, v, c) ∈ Mwf

and o[m → v] c
code ∈ M, and between vamv(o, m, v, c) ∈ Mwf and o[m → v] c

val
∈ M, taking into account the truth values of atoms. Thus the cautious object
model of P can be effectively computed by the well-founded model of Pwf .

Definition 42. Let Pwf be the well-founded rewriting of an F-logic KB P and
Iwf a subset of HBPwf . We will say that Iwf is in normal form, if for all o, m, v:
mv(o, m, v) ∈ Iwf iff exmv(o, m, v) ∈ Iwf , or there is some class c such that
vamv(o, m, v, c) ∈ Iwf or comv(o, m, v, c) ∈ Iwf .

In the following we introduce notations to represent the intermediate results
during the computation of the well-founded model of a general logic program.
These notations are used in the proof of the main theorem of this section.



112 G. Yang and M. Kifer

Definition 43. Let Pwf be the well-founded rewriting of an F-logic KB P. De-
fine:

Twf
0 = ∅ Uwf

0 = SPwf (Twf
0 ) for limit ordinal 0

Twf
α = SPwf (Uwf

α−1) Uwf
α = SPwf (Twf

α ) for successor ordinal α

Twf
α =

⋃
β<α

Twf
β Uwf

α = SPwf (Twf
α ) for limit ordinal α 
= 0

Twf
∞ =

⋃
α

Twf
α Uwf

∞ = SPwf (Twf
∞ )

Now we are ready to present the main theorem of this section. This theorem
relies on a number of lemmas and propositions whose proofs are quite long; they
can be found in Section A.3 of the Appendix.

Theorem 6. Given the well-founded rewriting Pwf of an F-logic KB P, the
well-founded model of Pwf is isomorphic to the cautious object model of P.

Proof. Let Mwf = 〈Twf ; Uwf 〉 be the well-founded model of Pwf . Then by
Lemma 15, Twf = Twf

∞ and Uwf = Uwf
∞ − Twf

∞ . Let M = 〈T; U 〉 be the cautious
object model of P. Then by Lemma 10, T = π(T̂∞) and U = π(Û∞ − T̂∞).
Therefore, by Definition 41, to show that Mwf is isomorphic to M, it suffices
to show that Twf

∞ is isomorphic to T̂∞ and Uwf
∞ is isomorphic to Û∞.

First note that Twf
α and Uwf

α are in normal form for any ordinal α, by
Proposition 9. Now we will prove by transfinite induction that Twf

α is isomorphic
to T̂α and Uwf

α is isomorphic to Ûα, for any ordinal α. There are three cases to
consider:

(1) α = 0.
The claim is vacuously true for Twf

0 and T̂0. Uwf
0 = SPwf (Twf

0 ) = lfp(CPwf ,Twf
0

),

by Definitions 43 and 40, and Û0 = ΨP(T̂0) = lfp(TP,�T0
), by Definitions 32

and 27. It follows that Uwf
0 is isomorphic to Û0, by Proposition 8.

(2) α is a successor ordinal.
Then Twf

α = SPwf (Uwf
α−1) = lfp(CPwf ,Uwf

α−1
), by Definitions 43 and 40, and

T̂α = ΨP(Ûα−1) = lfp(TP,�Uα−1
), by Definitions 32 and 27. Moreover, Uwf

α−1 is

isomorphic to Ûα−1 by the induction hypothesis. It follows that Uwf
α is isomor-

phic to Ûα, by Proposition 8. Similarly to (1), we can also show that Uwf
α is

isomorphic to Ûα.

(3) α 
= 0 is a limit ordinal.
Then Twf

α =
⋃

β<α Twf
β and T̂α =

⋃
β<α T̂β. Clearly, Twf

α is isomorphic to T̂α,
because Twf

β is isomorphic to T̂β for all β < α, by the induction hypothesis.
Similarly to (1), we can also show that Uwf

α is isomorphic to Ûα.
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Note that Twf
∞ =

⋃
α Twf

α and T̂∞ =
⋃

α T̂α. Therefore, it follows that Twf
∞

is isomorphic to T̂∞, because Twf
α is isomorphic to T̂α, for any ordinal α.

Moreover, Uwf
∞ = SPwf (Twf

∞ ) = lfp(CPwf ,Twf
∞

), by Definitions 43 and 40, and

Û∞ = ΨP(T̂∞) = lfp(TP,�T∞), by Definitions 32 and 27. Thus Uwf
∞ is isomorphic

to Û∞, by Proposition 8.

It is easy to see that Pwf can be computed in time linear in the size of the
original F-logic KB P. Also, the trailer rules in Figure 13 are fixed and do not
depend on P. Therefore, the size of Pwf is also linear relative to the size of the
original F-logic KB P. This observation, combined with Theorem 6, leads to the
following claim about the data complexity [43] of our inheritance semantics.

Theorem 7. The data complexity of the cautious object model semantics for
function-free F-logic KBs is polynomial-time.

11 Related Work

Inheritance is one of the key aspects in frame-based knowledge representation.
This problem has been studied quite extensively in the AI and database lit-
erature. To make our comparison with the related work concrete, we first list
the main features of inheritance that we view should be supported by a general
frame-based knowledge system:

– Inference by default inheritance and inference via rules.
– Intentional class hierarchies, i.e., the ability to define both class membership

and subclass relationship via rules.
– Data-dependent and data-independent inheritance. As we have shown, value

inheritance is data-dependent, and this is the type of inheritance generally
considered in AI. Code inheritance is data-independent and is of the kind
that is common in imperative programming languages like C++ and Java.

– Overriding of inheritance from more general classes by more specific classes.
Note that this also needs to take into account the interactions between
data-dependent and data-independent inheritance.

– Nonmonotonic inheritance from multiple superclasses. Some proposals avoid
this problem by imposing syntactic restrictions on rules. To this end, these
proposals do not support nonmonotonic multiple inheritance.

– Introspection, by which variables can range over both class and method
names.

– Late binding. This feature is common in imperative object-oriented lan-
guages such as C++ and Java. Supporting late binding requires resolving
method names at runtime, when the class from which the instance method
definitions are inherited is decided.

There is a large body of work based on Touretzky’s framework of Inheritance
Nets [41]. On one hand, the overriding mechanism in this framework is more
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sophisticated than what is typically considered in the knowledge base context.
On the other hand, this framework supports neither deductive inference via rules
nor intensional class hierarchies, which makes it too weak for many applications
of knowledge bases. A survey on several different approaches to computing in-
heritance semantics based on Inheritance Nets can be found in [26].

There is also vast literature on extending traditional relational database sys-
tems with object-oriented features. However, these proposals do not support
deduction via inference rules, which makes them mostly orthogonal to the prob-
lems addressed in this paper. For a comprehensive survey on this subject we
refer the readers to [23].

The original F-logic [21,22] resolved many semantic and proof-theoretic issues
in rule-based frame systems. However, the original semantics for inheritance in
F-logic was problematic. It was defined through a nondeterministic inflationary
fixpoint and was not backed by a corresponding model theory. This semantics
was known to produce questionable results (cf. Section 3) when default inher-
itance and inference via rules interact. In addition, only value inheritance was
considered in the original F-logic.

Ordered Logic [25] incorporates some aspects of the object-oriented paradigm.
In this framework, both positive and negative literals are allowed in rule heads,
and inference rules are grouped into a set of modules that collectively form a
static class hierarchy. Although Ordered Logic supports overriding and prop-
agation of rules among different modules, the idea of late binding is not built
into the logic. Since it is primarily committed to resolving inconsistency between
positive and negative literals, its semantics has a strong value-based value in-
heritance flavor. Furthermore, this approach permits only fixed class hierarchies
and it does not support introspection.

Abiteboul et al. proposed a framework for implementing inheritance that is
based on program rewriting using Datalog with negation [1]. Our implementa-
tion of the new F-logic semantics is close in spirit to their approach. However,
their proposal is not backed by an independent model-theoretic formalization.
Their framework further excludes nonmonotonic multiple inheritance and makes
a very strong assumption that the rewritten knowledge base must have a total
(two-valued) well-founded model. This latter assumption does not generally hold
without strong syntactic restrictions that force stratification of the knowledge
base. The framework is also limited to value inheritance.

In [12], Dobbie and Topor developed a model theory for monotonic code in-
heritance in their object-oriented deductive language Gulog. A special feature of
their language is that all the variables in a rule must be explicitly typed according
to a separate signature declaration. However, this language does not support any
kind of nonmonotonic, data-dependent, or multiple inheritance. In [11], Dobbie
further extends this approach to allow nonmonotonic inheritance. However, even
this extension disallows interaction between inheritance and deduction and does
not support multiple inheritance (the user must disambiguate inheritance con-
flicts manually).
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Liu et. al. [27] modified the original F-logic to support code inheritance. How-
ever, to achieve that they had to throw out data-dependent inheritance, much
of introspection, and intensional class hierarchies.

Bugliesi and Jamil proposed a model-theoretic semantics for value and code
inheritance with overriding [5], which bears close resemblance to two-valued sta-
ble models [16]. However, their semantics applies only to negation-free knowledge
bases (a severe limitation) and does not handle multiple inheritance conflicts.
Instead, it makes multiple inheritance behave additively. (Such behavior can
be easily simulated via rules.) In addition, their framework does not support
data-dependent value inheritance, intensional class hierarchies, and more impor-
tantly, it does not provide an algorithm to compute a canonical model under
their semantics.

May et al. [32] applied the ideas behind the well-founded semantics to F-logic.
However, inheritance is still dealt with in the same way as in the original F-logic.
Deduction and inheritance are computed in two separate stages and so the com-
putation process has an inflationary fixpoint flavor. As mentioned in Section 3,
this semantics is known to produce counter-intuitive results when intensional
class hierarchies interact with overriding and multiple inheritance. Code inheri-
tance is also not handled by this semantics.

In [19,20], Jamil introduced a series of techniques to tackle the inheritance
problem. Among these, the ideas of locality and context, which were proposed
to resolve code inheritance and encapsulation in the language Datalog++, have
influenced our approach the most. However, this work does not come with a
model-theoretic inheritance semantics and supports neither intensional class hi-
erarchies nor introspection. The inheritance semantics in [19] is defined by pro-
gram rewriting while in [20] the approach is proof-theoretic.

Finally, May and Kandzia [31] showed that the original F-logic semantics can
be described using the inflationary extension of Reiter’s Default Logic [37]. In
their framework, inheritance semantics is encoded using defaults. However, their
inheritance strategy is inflationary — once a fact is derived through inheritance,
it is never undone. Therefore, a later inference might invalidate the original
conditions (encoded as justifications of defaults) for inheritance (cf. Section 3).
Moreover, nonmonotonic multiple inheritance is handled in such a way that
when multiple incomparable inheritance sources exist, one of them is randomly
selected for inheritance instead of none (as in our framework). Code inheritance
is not considered in [31].

12 Conclusion and Future Work

We have developed a novel model theory and a computational framework for
nonmonotonic multiple inheritance of value and code in rule-based frame sys-
tems. We have shown that this semantics is implementable using a deductive
engine, such as XSB [7], that supports well-founded semantics [15]. The value
inheritance part of this semantics has been implemented in Flora-2 [44,46], a
knowledge representation system, which is built around F-logic, HiLog [6], and
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Transaction Logic [4].5 Adding code inheritance to Flora-2 is planned for the
near future.

The semantics proposed in this paper can be extended — without adding to
the syntax — to allow a new kind of inheritable methods in addition to the
traditional instance methods. The idea is to allow the template term @this in a
template rule to be instantiated not only with instances of the class for which
the template rule is defined, but also with that class itself and its subclasses
as well. Effectively this turns template rules into pieces of code that also define
class methods and that are inheritable by subclasses. For instance, with such a
modification, the template rule

code(employee) @this[avgSalary → A] :− A = avg{S|E :@this, E[salary → S]}.

where avg{...} is the averaging aggregate function, could be instantiated with
class employee itself to

employee[avgSalary → A] :− A = avg{S|E : employee, E[salary → S]}.

and instantiated with one of employee’s subclasses, secretary, to

secretary[avgSalary → A] :− A = avg{S|E : secretary, E[salary → S]}.

Similar rules could be obtained for other subclasses of employee, such as engineer
and faculty. The last two rules above define the class method, avgSalary, for
classes employee and secretary. It returns the average salary of an employee and
a secretary, respectively. This kind of methods is not possible using the earlier
machinery of class and instance methods.

Our model-theoretic approach points to several future research directions.
First, the proposed semantics for inheritance here can be viewed as source-based .
This means that in determining whether a multiple inheritance conflict exists
the semantics takes into account only whether the same method is defined at
different inheritance sources. A conflict is declared even if they all return exactly
the same set of values. A content-based inheritance policy would not view this
as a conflict. Such content-based inheritance seems harder computationally, but
is worth further investigation. Second, it has been observed that inheritance-like
phenomena arise in many domains, such as discretionary access control and trust
management [18], but they cannot be formalized using a single semantics. We
are considering extensions to our framework to allow users to specify their own
ad hoc inheritance policies in a programmable, yet declarative, way.
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A Appendix: Proofs

This appendix includes the proofs of all the main theorems, their supporting
lemmas, and propositions found in the main body of the paper.

A.1 Lemmas and Propositions Supporting Theorem 1 in Section 8

Lemma 16. Let P be an F-logic KB and I = 〈T; U 〉 a stable interpretation of
P, then:

T̂I = RCP,�UI(T̂I) ∪ TCP,�UI (T̂I) ∪ ICt (T̂I) ∪ ICc
P,�UI

(T̂I) ∪ ICi
P,�UI

(T̂I)

ÛI = RCP,�TI (ÛI) ∪ TCP,�TI (ÛI) ∪ ICt(ÛI) ∪ ICc
P,�TI

(ÛI) ∪ ICi
P,�TI

(ÛI)

Proposition 1. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the regular rules of P.

Proof. By contradiction.
Suppose, to the contrary, that I does not satisfy the regular rules of P.

Then by Definitions 3 and 2, there is a ground regular rule, H :− L1, . . . , Ln,
in ground(P), such that Vh

I (H) < Vb
I (L1 ∧ . . . ∧ Ln). Thus it must be the case

that Vb
I (L1 ∧ . . . ∧ Ln) = t and Vh

I (H) 
= t, or Vb
I (L1 ∧ . . . ∧ Ln) = u and

Vh
I (H) = f .

(1) Vb
I (L1 ∧ . . . ∧ Ln) = t and Vh

I (H) 
= t
It follows that Vb

I (Li) = t for all Li, 1 ≤ i ≤ n, by Definition 1. So by Lemma 1:
(i) if Li is a positive literal then valb

�TI
(Li) = t; and (ii) if Li is a negative literal
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then valb
�UI

(Li) = t. Therefore, for the atom A ∈ HBP such that H matches A,

it follows that A ∈ RCP,�UI (T̂I) ⊆ T̂I , by Definition 22 and Lemma 16. Thus
I(A) = t, and so Vh

I (H) = I(A) = t by Definitions 21 and 1, a contradiction.

(2) Vb
I (L1 ∧ . . . ∧ Ln) = u and Vh

I (H) = f
It follows that Vb

I (Li) ≥ u for all Li, 1 ≤ i ≤ n, by Definition 1. So by Lemma 1:
(i) if Li is a positive literal then valb

�UI
(Li) = t; and (2) if Li is a negative literal

then valb
�TI

(Li) = t. Therefore, for the atom A ∈ HBP such that H matches A,

it follows that A ∈ RCP,�TI (ÛI) ⊆ ÛI , by Definition 22 and Lemma 16. Thus
I(A) ≥ u, and so Vh

I (H) = I(A) ≥ u by Definitions 21 and 1, a contradiction.

Proposition 2. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the positive ISA transitivity constraint.

Proof. By Definition 10, we need to show that the following conditions hold:

(1) for all s, c: if there is x such that I(s :: x) = t and I(x :: c) = t, then
I(s :: c) = t;

(2) for all o, c: if there is x such that I(o : x) = t and I(x :: c) = t, then
I(o : c) = t.

Note that for all s, c: I(s :: c) = t iff s :: c ∈ T ⊆ T̂I and, for all o, c: I(o : c) = t
iff o : c ∈ T ⊆ T̂I . Let s :: x ∈ T ⊆ T̂I and x :: c ∈ T ⊆ T̂I . Then s :: c ∈ ICt (T̂I)
by Definition 25. It follows that s :: c ∈ ICt (T̂I) ⊆ T̂I , by Lemma 16. Similarly,
if o : x ∈ T̂I and x :: c ∈ T̂I , then o : c ∈ ICt (T̂I) ⊆ T̂I .

Proposition 3. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the context consistency constraint.

Proof. By Definition 11, we need to show that the following conditions hold:

(1) for all o, m, v: I(o[m → v] o
val) = f and I(o[m → v] o

code) = f .
Note that I(o[m → v] o

val) = f iff o[m → v] o
val /∈ T ∪ U iff o[m → v] o

val /∈ ÛI by
Definition 29. Similarly, I(o[m → v] o

code) = f iff o[m → v] o
code /∈ ÛI . Since I

is a stable interpretation of P, we have ÛI = ΨP(T̂I), by Definition 30. It then
follows from Lemma 6 that o[m → v] o

val /∈ ÛI and o[m → v] o
code /∈ ÛI , for all

o, m, v.

(2) for all c, m, v: if I(c[m → v]ex) = f , then I(o[m → v] c
val) = f for all o.

Let I(c[m → v]ex) = f . It follows that c[m → v]ex /∈ ÛI . We need to show that
o[m → v] c

val /∈ ÛI for all o. Suppose, to the contrary, that there exists o such
that o[m → v] c

val ∈ ÛI . Because I is a stable interpretation of P, ÛI = ΨP(T̂I).
It follows that o[m → v] c

val ∈ ICi
P,�TI

(ÛI) by Lemma 6. So c[m] val
� o ∈ ÛI ,

by Definition 25. Thus c[m] val
� o ∈ ICc

P,�TI
(ÛI) by Lemma 16. It follows that

c[m → v]ex ∈ ÛI by Definition 25, which contradicts the premise.
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(3) for all c, m: if there is no template rule in ground(P) which specifies the
instance method m for class c, then I(o[m → v] c

code) = f for all o, v.
Suppose, to the contrary, that there exist o, v such that I(o[m → v] c

code) 
= f .
Then o[m → v] c

code ∈ T ∪ U ⊆ ÛI . It follows that o[m → v] c
code ∈ ICi

P,�TI
(ÛI)

by Lemma 6. Thus c[m] code
� o ∈ ÛI by Definition 25 and so c[m] code

� o∈ICc
P,�TI

(ÛI)
by Lemma 16. Hence, by Definition 25, there must exist a template rule in
ground(P) which specifies the instance method m for the class c, a contradiction.

(4) for all o, m: if o[m] is a strong explicit definition, then I(o[m → v] c
val) = f

and I(o[m → v] c
code) = f for all v, c.

Let o[m] be a strong explicit definition. Then there must exist v such that
o[m → v]ex ∈ T ⊆ T̂I by Definition 4. So ec(o, m) ∈ IBP(T̂I) by Definition 23.
Suppose, to the contrary, that there exist v, c such that I(o[m → v] c

val) 
= f .
Then o[m → v] c

val ∈ T ∪ U ⊆ ÛI . It follows that o[m → v] c
val ∈ ICi

P,�TI
(ÛI) by

Lemma 6. Thus ec(o, m) /∈ IBP(T̂I) by Definition 25, a contradiction. Similarly,
we can show that I(o[m → v] c

code) = f for all v, c.

Proposition 4. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the unique source inheritance constraint.

Proof. By Definition 12, we need to show that the following conditions hold:

(1) for all o, m, v, c: if I(o[m → v] c
val) = t or I(o[m → v] c

code) = t, then for all
z, x such that x 
= c, I(o[m → z] x

val) = f and I(o[m → z] x
code) = f .

Because I is a stable interpretation of P, T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I),
by Definition 30. If I(o[m → v] c

val) = t, then o[m → v] c
val ∈ T ⊆ T̂I by

Definition 29. So o[m → v] c
val ∈ ICi

P,�UI
(T̂I) by Lemma 6. It follows that

c[m] val
� o ∈ T̂I by Definition 25. On the other hand, if I(o[m → v] c

code) = t,
then o[m → v] c

code ∈ T ⊆ T̂I by Definition 29. So o[m → v] c
code ∈ TCP,�UI (T̂I)

by Lemma 6. Thus c[m] code
� o ∈ T̂I by Definition 25. Therefore, c[m] val

� o ∈ T̂I or
c[m] code

� o ∈ T̂I .
Suppose, to the contrary, that there are z, x such that x 
=c, I(o[m → z] x

val)≥u.
Then o[m → z] x

val ∈ T∪U ⊆ ÛI by Definition 29. So o[m → v] x
val ∈ ICi

P,�TI
(ÛI)

by Lemma 6. Therefore, mc(x, m, o) /∈ IBP(T̂I) by Definition 25. Since x 
= c, it
follows that c[m] val

� o /∈ T̂I by Definition 23, which is a contradiction. Therefore,
I(o[m → z] x

val) = f for all z, x such that x 
= c. Similarly, we can also show that
I(o[m → z] x

code) = f for all z, x such that x 
= c.

(2) for all c, m, o: if c[m] s.val
�I o or c[m] s.code

� I o, then I(o[m → v] x
val) = f and

I(o[m → v] x
code) = f , for all v, x such that x 
= c.

Let c[m] s.val
�I o or c[m] s.code

� I o. Suppose, to the contrary, that there exist v, x such
that x 
= c, o[m → v] x

val 
= f . Then o[m → v] x
val ∈ T ∪ U ⊆ ÛI by Definition 29.

Because I is a stable interpretation of P, therefore ÛI = ΨP(T̂I) by Definition 30.
Thus o[m → v] x

val ∈ ICi
P,�TI

(ÛI) by Lemma 6 and so mc(x, m, o) /∈ IBP(T̂I)
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by Definition 25. However, by Definition 29, c[m] val
� o ∈ T̂I or c[m] code

� o ∈ T̂I .
Note that x 
= c. It follows that mc(x, m, o) ∈ IBP(T̂I) by Definition 23, which
is a contradiction. Therefore, I(o[m → v] x

val) = f for all v, x such that x 
= c.
Similarly, we can also show that I(o[m → v] x

code) = f for all v, x such that
x 
= c.

(3) for all o, m, v, c: I(o[m → v] c
val) = t iff

(i) o[m] is neither a strong nor a weak explicit definition; and
(ii) c[m] s.val

�I o; and
(iii) I(c[m → v]ex) = t; and
(iv) there is no x such that x 
= c and x[m] �I o.

“ ⇒ ”. Since I is a stable interpretation of P, T̂I = ΨP(ÛI) by Definition 30.
Because I(o[m → v] c

val) = t, o[m → v] c
val ∈ T ⊆ T̂I by Definition 29. Thus

o[m → v] c
val ∈ ICi

P,�UI
(T̂I) by Lemma 6, and c[m] val

� o ∈ T̂I , c[m → v]ex ∈ T̂I ,

ec(o, m) /∈ IBP(ÛI), and mc(c, m, o) /∈ IBP(ÛI), by Definition 25. Note that
ec(o, m) /∈ IBP(ÛI). It follows that o[m → x]ex /∈ ÛI for all x, by Definition 23.
Thus I(o[m → x]ex) = f for all x and so o[m] is neither a strong nor a weak
explicit definition, by Definition 4. Note that c[m] val

� o ∈ T̂I . It follows that
c[m] s.val

�I o by Definition 29. c[m → v]ex ∈ T̂I implies I(c[m → v]ex) = t. Be-
cause mc(c, m, o) /∈ IBP(ÛI), therefore there is no x 
= c such that x[m] val

� o ∈ ÛI
or x[m] code

� o ∈ ÛI , by Definition 23. So there is no x such that x 
= c and
x[m] �I o, by Definition 29.
“ ⇐ ”. Since o[m] is neither a strong nor a weak explicit definition, it follows
that I(o[m → x]ex) = f for all x, by Definition 4. So o[m → x]ex /∈ T ∪ U for
all x, and ec(o, m) /∈ IBP(ÛI), by Definitions 29 and 23. Because c[m] s.val

�I o,
therefore c[m] val

� o ∈ T̂I by Definition 29. Since I(c[m → v]ex) = t, it follows
that c[m → v]ex ∈ T ⊆ T̂I . Because I is a stable interpretation of P, therefore
T̂I = ΨP(ÛI), by Definition 30. So if we can show that mc(c, m, o) /∈ IBP(ÛI),
then it follows that o[m → v] c

val ∈ ICi
P,�UI

(T̂I) ⊆ T̂I , by Definition 25 and

Lemma 16. Suppose, to the contrary, that mc(c, m, o) ∈ IBP(ÛI). Then, by
Definition 23, there is x 
= c such that x[m] val

� o ∈ ÛI or x[m] code
� o ∈ ÛI . It

follows that x[m] �I o by Definition 29, which contradicts the premise. Therefore,
mc(c, m, o) /∈ IBP(ÛI), and so o[m → v] c

val ∈ T̂I , I(o[m → v] c
val) = t.

Proposition 5. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the template rules of P.

Proof. By contradiction. Because I is a stable interpretation of P, T̂I = ΨP(ÛI)
and ÛI = ΨP(T̂I) by Definition 30. Suppose, to the contrary, that I does not
satisfy the template rules of P. Then, by Definition 19, ground(P) has an object
o ∈ HUP and a template rule R either of the form code(c) @this[m → v] :− B
or of the form code(c) @this[m → v], such that I(R‖o) = f . Let us assume that
R ≡ code(c) @this[m → v] :− B (the case in which R ≡ code(c) @this[m → v] is
similar). By Definition 18, there are three possible cases to consider:
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(1) imodeI(R‖o) = t and I(o[m → v] c
code) < Vb

I (B‖o)
Because imodeI(R‖o) = t, therefore by Definition 16: (i) c[m] s.code

� I o and so
c[m] code

� o ∈ T̂I by Definition 29; (ii) ec(o, m) is neither a strong nor a weak ex-
plicit definition. So ec(o, m) /∈ IBP(ÛI) by Definitions 23 and 4; and (iii) there
is no x 
= c such that x[m] �I o. It follows that there is no x 
= c such that
x[m] val

� o ∈ ÛI or x[m] code
� o ∈ ÛI by Definition 29. Thus mc(c, m, o) /∈ IBP(ÛI).

Since T̂I ⊆ ÛI , it also follows that c[m] code
� o ∈ ÛI , ec(o, m) /∈ IBP(T̂I), and

mc(c, m, o) /∈ IBP(T̂I), by the monotonicity of IBP.
First let us assume Vb

I (B‖o) = t. It follows that I(o[m → v] c
code) 
= t. Since

Vb
I (B‖o) = t, it follows that Vb

I (L) = t for all L ∈ B‖o, by Definition 1. So by
Lemma 1: (i) if L is a positive literal then valb

�TI
(L) = t; and (ii) if L is a negative

literal then valb
�UI

(L) = t. Therefore, o[m → v] c
code ∈ TCP,�UI(T̂I) ⊆ T̂I , by

Definition 24 and Lemma 16. Thus I(o[m → v] c
code) = t, a contradiction. On

the other hand, if Vb
I (B‖o) = u, then I(o[m → v] c

code) = f . Since Vb
I (B‖o) = u,

it follows that Vb
I (L) ≥ u for all L ∈ B‖o, by Definition 1. So by Lemma 1: (i) if

L is a positive literal then valb
�UI

(L) = t; and (2) if L is a negative literal then

valb
�TI

(L) = t. Therefore, o[m → v] c
code ∈ TCP,�TI (ÛI) ⊆ ÛI , by Definition 22

and Lemma 16. Thus I(o[m → v] c
code) ≥ u, a contradiction.

(2) imodeI(R‖o) = u, I(o[m → v] c
code) = f , and Vb

I (B‖o) ≥ u
Because imodeI(R‖o) = u, by Definition 17: (i) c[m] s.code

� I o or c[m] w.code
� I o, and

so c[m] code
� o ∈ ÛI by Definition 29; (ii) ec(o, m) is not a strong explicit definition

and so ec(o, m) /∈ IBP(T̂I) by Definitions 23 and 4; and (iii) there is no x 
= c
such that x[m] s.val

�I o or x[m] s.code
� I o. It follows that there is no x 
= c such that

x[m] val
� o ∈ T̂I or x[m] code

� o ∈ T̂I by Definition 29. Thus mc(c, m, o) /∈ IBP(T̂I).
Since Vb

I (B‖o) ≥ u, it follows that Vb
I (L) ≥ u for all L ∈ B‖o, by Definition 1. So

by Lemma 1: (i) if L is a positive literal then valb
�UI

(L) = t; and (2) if L is a

negative literal then valb
�TI

(L) = t. Thus o[m → v] c
code ∈ TCP,�TI (ÛI) ⊆ ÛI , by

Definition 22 and Lemma 16. So, I(o[m → v] c
code) ≥ u, a contradiction.

(3) imodeI(R‖o) = f and I(o[m → v] c
code) ≥ u

Because I(o[m → v] c
code) ≥ u, so o[m → v] c

code ∈ U ⊆ ÛI . It follows that
o[m → v] c

code ∈ TCP,�TI (ÛI) by Lemma 6. So by Definition 24, c[m] code
� o ∈ ÛI ,

ec(o, m) /∈ IBP(T̂I), and mc(c, m, o) /∈ IBP(T̂I). Because c[m] code
� o ∈ ÛI , so

c[m] s.code
� I o or c[m] w.code

� I o, by Definition 29. Since ec(o, m) /∈ IBP(T̂I), there-
fore ec(o, m) is not a strong explicit definition, by Definitions 23 and 4. Be-
cause mc(c, m, o) /∈ IBP(T̂I), so there is no x 
= c such that x[m] val

� o ∈ T̂I
or x[m] val

� o ∈ T̂I . It follows that there is no x 
= c such that x[m] s.val
�I o or

x[m] s.code
� I o, by Definition 29. Thus o must either weakly or strongly inherit

R, by Definitions 17 and 16. Therefore, imodeI(R‖o) ≥ u, a contradiction.

Proposition 6. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the cautious ISA transitivity constraint.



124 G. Yang and M. Kifer

Proof. By Definition 13, we need to show that the following conditions hold:

(1) for all s, c: if there is x such that I(s :: x ∧ x :: c) = u and I(s :: c) 
= t,
then I(s :: c) = u;

(2) for all o, c: if there is x such that I(o : x ∧ x :: c) = u and I(o : c) 
= t,
then I(o : c) = u.

Suppose I(s :: x∧ x :: c) = u. Then s :: x ∈ T∪U and x :: c ∈ T∪U. It follows that
s :: x ∈ ÛI and x :: c ∈ ÛI , by Definition 29. So s :: c ∈ ICt (ÛI) by Definition 25.
Since ÛI = ΨP(T̂I) by Definition 30, it follows that s :: c ∈ ICt(ÛI) ⊆ ÛI , by
Lemma 16. Thus I(s :: c) ≥ u. But I(s :: c) 
= t. It follows that I(s :: c) = u.
Similarly, if I(o : x ∧ x :: c) = u and I(o : c) 
= t, then I(o : c) = u.

Proposition 7. Let I = 〈T; U 〉 be a stable interpretation of an F-logic KB P.
Then I satisfies the cautious inheritance constraint.

Proof. By Definition 14, we need to show for all o, m, v, c: I(o[m → v] c
val) = u

iff the following conditions hold:

(i) o[m] is not a strong explicit definition;
(ii) c[m] s.val

�I o or c[m] w.val
� I o;

(iii) I(c[m → v]ex) ≥ u;
(iv) there is no x 
= such that x[m] s.val

�I o or x[m] s.code
� I o;

(v) I(o[m → v] c
val) 
= t.

“ ⇒ ”. Because I is a stable interpretation of P, therefore ÛI = ΨP(T̂I) by
Definition 30. Because o[m → v] c

val = u, therefore o[m → v] c
val ∈ T∪U ⊆ ÛI by

Definition 29. Thus o[m → v] c
val ∈ ICi

P,�TI
(ÛI), by Lemma 6. So c[m] val

� o ∈ ÛI ,

c[m → v]ex ∈ ÛI , ec(o, m) /∈ IBP(T̂I), and mc(c, m, o) /∈ IBP(T̂I), according
to Definition 25. Because ec(o, m) /∈ IBP(T̂I), it follows that o[m → x]ex /∈ T̂I
for all x, by Definition 23. So I(o[m → x]ex) 
= t for all x. Thus o[m] is not
a strong explicit definition by Definition 4. Because c[m] val

� o ∈ ÛI , it fol-
lows that c[m] s.val

�I o or c[m] w.val
� I o, by Definition 29. c[m → v]ex ∈ ÛI implies

I(c[m → v]ex) ≥ u. Because mc(c, m, o) /∈ IBP(T̂I), it follows that there is no
x 
= c such that c[m] val

� o ∈ T̂I or c[m] code
� o ∈ T̂I . So there is no x 
= c such that

c[m] s.val
�I o or c[m] s.code

� I o, by Definition 29.
“ ⇐ ”. Because o[m] is not a strong explicit definition, I(o[m → x]ex) 
= t for

all x, by Definition 4. It follows that o[m → x]ex /∈ T for all x, and so ec(o, m) /∈
IBP(T̂I), by Definitions 29 and 23. Because c[m] s.val

�I o or c[m] w.val
� I o, therefore

c[m] val
� o ∈ ÛI by Definition 29. Since I(c[m → v]ex) ≥ u, it follows that

c[m → v]ex ∈ T ∪ U ⊆ ÛI . Because I is a stable interpretation of P, therefore
ÛI = ΨP(T̂I), by Definition 30. So if we can show mc(c, m, o) /∈ IBP(T̂I), then it
follows that o[m → v] cval ∈ ICi

P,�TI
(ÛI) ⊆ ÛI , by Definition 25 and Lemma 16.

Suppose, to the contrary, that mc(c, m, o) ∈ IBP(T̂I). Then there is x 
= c such
that x[m] val

� o ∈ T̂I or x[m] code
� o ∈ T̂I by Definition 23. It follows that x[m] s.val

�I o
or x[m] s.code

� I o, by Definition 29, which contradicts the premise. Therefore,



Inheritance in Rule-Based Frame Systems: Semantics and Inference 125

mc(c, m, o) /∈ IBP(T̂I), and so o[m → v] cval ∈ ÛI , I(o[m → v] cval) ≥ u. But
I(o[m → v] cval) 
= t. So I(o[m → v] cval) = u.

A.2 Proof of Theorem 5 in Section 9

Theorem 5. The cautious object model M of an F-logic KB P is minimal
among those object models of P that satisfy the cautious ISA transitivity con-
straint and the cautious inheritance constraint.

Proof. Recall that M =〈π(T̂∞); π(Û∞)−π(T̂∞) 〉. Let I = 〈T; U 〉 be an object
model of P that satisfies the cautious ISA transitivity constraint and the cautious
inheritance constraint. Moreover, I ≤ M. To show that M is minimal, it suffices
to show that T = T̂∞ and T ∪ U = Û∞. By Definition 35: (i) T ⊆ T̂∞;
(ii) T ∪ U ⊆ Û∞; (iii) for all c, m, o: c[m] s.val

�I o implies c[m] s.val
�M o; and (iv) for

all c, m, o: c[m] s.code
� I o implies c[m] s.code

� M o. Let J = 〈T; ∅ 〉 and K = 〈T ∪ U; ∅ 〉.
Suppose, to the contrary, that T ⊂ T̂∞. Since T̂∞ =

⋃
γ T̂γ by Definition 32

and {T̂γ} is an increasing sequence by Lemma 9, let α be the first ordinal such
that T ⊂ T̂α and T ⊇ T̂γ for all γ < α. Clearly, α must be a successor ordinal.
Thus T̂α = lfp(TP,�Uα−1

), by Definitions 32 and 27. Since TP,�Uα−1
is monotonic

by Lemma 5, it follows that the ordinal powers of TP,�Uα−1
is an increasing

sequence. Denote Ĵ γ = Tγ

P,�Uα−1
for all ordinal γ. Let β be the first ordinal such

that T ⊂ Ĵ β and T ⊇ Ĵ γ for all γ < β. Clearly, β must be a successor ordinal.
Let A be any atom in HBP such that A /∈ T and A ∈ Ĵ β . By Definitions 26
and 25, we have:

Ĵβ = RCP,�Uα−1
( Ĵβ−1 ) ∪ TCP,�Uα−1

( Ĵβ−1 ) ∪

ICt ( Ĵβ−1 ) ∪ ICc
P,�Uα−1

( Ĵβ−1 ) ∪ ICi
P,�Uα−1

( Ĵβ−1 )

There are four cases to consider:

(1) A ∈ RCP,�Uα−1
( Ĵβ−1 )

By Definition 22, there must exist a regular rule, H :− L1, . . . , Ln, in ground(P),
such that H matches A, and for all Li, 1 ≤ i ≤ n: (i) if Li is a positive literal,
then valb

�Jβ−1
(Li) = t; and (ii) if Li is a negative literal, then valb

�Uα−1
(Li) = t.

Next we show that for all Li, 1 ≤ i ≤ n, Vb
I (Li) = t. If Li is a positive literal,

since Ĵβ−1 ⊆ T and valb
�Jβ−1

(Li) = t, then it follows that Vb
J (Li) = t, by

Lemma 2. Thus Vb
I (Li) = t by Lemma 1. Note that Û∞ ⊆ Ûα−1 by Lemma 9.

It follows that T ∪ U ⊆ Û∞ ⊆ Ûα−1. Therefore, if Li is a negative literal, since
valb

�Uα−1
(Li) = t, then it follows that Vb

K(Li) = t, by Lemma 2. Thus Vb
I (Li) = t

by Lemma 1. Because I satisfies P, it follows that I(A) = Vh
I (H) = t. Thus

A ∈ T, a contradiction.
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(2) A ∈ TCP,�Uα−1
( Ĵβ−1 )

It must be true that A = o[m → v] c
code. So, by Definition 24, c[m] code

� o ∈ Ĵβ−1 ,
ec(o, m) /∈ IBP(Ûα−1), mc(c, m, o) /∈ IBP(Ûα−1), and there is a template rule,
R ≡ code(c) @this[m → v] :− B, in ground(P) such that for every literal L∈B‖o:
(i) if L is a positive literal then valb

�Jβ−1
(L) = t; and (ii) if L is a negative literal

then valb
�Uα−1

(L) = t.

Because c[m] code
� o ∈ Ĵβ−1 , there must exist a successor ordinal ρ ≤ β −1 < β,

such that c[m] code
� o ∈ Ĵρ . It follows that c[m] code

� o ∈ ICc
P,�Uα−1

( Ĵρ−1 ). Thus

c 
= o, o : c ∈ Ĵρ−1 , and ov(c, m, o) /∈ IBP(Ûα−1), by Definition 25. Note that
Ĵρ−1 ⊆ T and T ∪ U ⊆ Û∞ ⊆ Ûα−1. So, o : c ∈ T and ov(c, m, o) /∈ IBP(T ∪ U).
Thus c[m] s.code

� I o by Lemma 4. Because ec(o, m) /∈ IBP(Ûα−1), it follows that
ec(o, m) /∈ IBP(T ∪ U) by the monotonicity of IBP. It follows that o[m] is neither
a strong nor a weak explicit definition in I, by Definitions 23 and 4.
Next we show that there is no x such that x 
= c, x[m] �I o. Suppose, to the
contrary, that there is x 
= c such that x[m] �I o. Then x 
= o, o : x ∈ T ∪ U,
x[m → y]ex ∈ T∪U for some y or there is a template rule in ground(P) that spec-
ifies the instance method m for class c, and ov(x, m, o) /∈ IBP(T), by Lemma 4.
Since T ∪ U ⊆ Û∞ ⊆ Ûα−1 and T ⊇ T̂α−1, so o : x ∈ Ûα−1, x[m → y]ex ∈ Ûα−1
for some y or there is a template rule that specifies the instance method m for
class c, and ov(x, m, o) /∈ IBP(T̂α−1). It follows that x[m] val

� o ∈ ICc
P,�Tα−1

(Ûα−1)

or x[m] code
� o ∈ ICc

P,�Tα−1
(Ûα−1), by Definition 25. Thus mc(c, m, o) ∈ IBP(Ûα−1),

by Definition 23, which contradicts the fact that mc(c, m, o) /∈ IBP(Ûα−1).
So far we have shown that o[m] is neither a strong nor a weak explicit definition

in I, c[m] s.code
� I o, and there is no x such that x 
= c and x[m] �I o. Therefore, o

strongly inherits R in I, by Definition 16. So imodeI(R‖o) = t. We already know
that for every literal L ∈ B‖o: (i) if L is positive then valb

�Jβ−1
(L) = t; and (ii) if L

is negative then valb
�Uα−1

(L) = t. Now we will show that for all L ∈ B‖o, Vb
I (L) = t.

If L is a positive literal, since Ĵβ−1 ⊆ T and valb
�Jβ−1

(L) = t, then it follows that

Vb
J (L) = t, by Lemma 2. Thus Vb

I (L) = t by Lemma 1. Note that Û∞ ⊆ Ûα−1

by Lemma 9. It follows that T ∪ U ⊆ Û∞ ⊆ Ûα−1. Therefore, if L is a negative
literal, since valb

�Uα−1
(L) = t, then it follows that Vb

K(L) = t, by Lemma 2. Thus

Vb
I (L) = t by Lemma 1.

Therefore, Vb
I (L) = t for every literal L ∈ B‖o. It follows that Vb

I (B‖o) = t.
In the above we have shown that imodeI(R‖o) = t. Since I is an object model
of P, so I should satisfy R‖o. Thus I(o[m → v] c

code) = t, by Definition 18. It
follows that o[m → v] c

code ∈ T, a contradiction.

(3) A ∈ ICt ( Ĵβ−1 )
If A = o : c, then there exists x, such that o : x ∈ Ĵβ−1 and x :: c ∈ Ĵ β−1, by
Definition 25. Since Ĵβ−1 ⊆ T, it follows that o : x ∈ T and x :: c ∈ T. So
I(o : x) = t and I(x :: c) = t. Because I is an object model of P and so satisfies
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the positive ISA transitivity constraint, therefore I(o : c) = t by Definition 10.
It follows that o : c ∈ T, a contradiction. Similarly, if A = s :: c, then we can also
show that s :: c ∈ T, which is a contradiction.

(4) A ∈ ICi
P,�Uα−1

( Ĵβ−1 )

It must be the case A = o[m → v] c
val. Thus, by Definition 25, c[m] val

� o ∈ Ĵβ−1 ,
c[m → v]ex ∈ Ĵβ−1 , ec(o, m) /∈ IBP(Ûα−1), and mc(c, m, o) /∈ IBP(Ûα−1).
Because c[m] val

� o ∈ Ĵβ−1 , there must exist a successor ordinal ρ ≤ β − 1 < β,
such that c[m] val

� o ∈ Ĵρ . It follows that c[m] val
� o ∈ ICc

P,�Uα−1
( Ĵρ−1 ). So, c 
= o,

o : c ∈ Ĵρ−1 , c[m → z]ex ∈ Ĵρ−1 for some z, and ov(c, m, o) /∈ IBP(Ûα−1), by
Definition 25. Since Ĵρ−1 ⊆ Ĵβ−1 ⊆ T and T ∪ U ⊆ Û∞ ⊆ Ûα−1, it follows
that o : c ∈ T, c[m → v]ex ∈ T, and ov(c, m, o) /∈ IBP(T ∪ U). Thus c[m] s.val

�I o
by Lemma 4. Because ec(o, m) /∈ IBP(Ûα−1), so ec(o, m) /∈ IBP(T ∪ U) by the
monotonicity of IBP. It follows that o[m] is neither a strong nor a weak explicit
definition in I, by Definitions 23 and 4.

Next we show that there is no x such that x 
= c, x[m] �I o. Suppose, to the
contrary, that there is x 
= c such that x[m] �I o. Then x 
= o, o : x ∈ T ∪ U,
x[m → y]ex ∈ T ∪ U for some y or there is a template rule in ground(P) which
specifies the instance method m for class c, and ov(x, m, o) /∈ IBP(T), by
Lemma 4. Since T∪U ⊆ Û∞ ⊆ Ûα−1 and T ⊇ T̂α−1, it follows that o : x ∈ Ûα−1,
x[m → y]ex ∈ Ûα−1 for some y or there is a template rule that specifies the
instance method m for class c, and ov(x, m, o) /∈ IBP(T̂α−1). It follows that
x[m] val

� o ∈ ICc
P,�Tα−1

(Ûα−1) or x[m] code
� o ∈ ICc

P,�Tα−1
(Ûα−1), by Definition 25.

Therefore, mc(c, m, o) ∈ IBP(Ûα−1), by Definition 23, which contradicts the fact
that mc(c, m, o) /∈ IBP(Ûα−1).

So far we have shown that o[m] is neither a strong nor a weak explicit definition in
I, c[m] s.val

�I o, I(c[m → v]ex) = t, and there is no x such that x 
= c and x[m] �I o.
Because I is an object model of P and so satisfies the unique source inheritance
constraint, therefore o[m → v] c

val ∈ T by Definition 12, a contradiction.

Therefore, if T ⊂ T̂∞, then we can derive a contradiction in all four possible
cases. So it must be true that T = T̂∞. It remains to show that T ∪ U = Û∞.
We know that T ∪ U ⊆ Û∞, because I ≤ M. Therefore, if we can show that
T ∪ U ⊇ Û∞, then T ∪ U = Û∞. By Definitions 32 and 27, Û∞ = lfp(TP,�T∞).
Since TP,�T∞ is monotonic, the ordinal powers of TP,�T∞ is an increasing sequence.

Denote K̂γ = Tγ

P,�T∞
for all ordinal γ. We will prove by transfinite induction

that T ∪ U ⊇ K̂α for all ordinal α, thus complete the proof.
The case for a limit ordinal α is trivial. If α = 0, then K̂0 = ∅ ⊆ T ∪ U.

If α 
= 0, then K̂α =
⋃

β<α K̂β . By the induction hypothesis we know that
T ∪ U ⊇ K̂β for all β < α. So T ∪ U ⊇ K̂α .
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Let α be a successor ordinal and A any atom in HBP such that A ∈ K̂α . We
will show A ∈ T ∪ U. By Definitions 26 and 25, we have:

K̂α = RCP,�T∞( K̂α−1 ) ∪ TCP,�T∞( K̂α−1 ) ∪

ICt( K̂α−1 ) ∪ ICc
P,�T∞

( K̂α−1 ) ∪ ICi
P,�T∞

( K̂α−1 )

There are four cases to consider:

(1) A ∈ RCP,�T∞( K̂α−1 )
By Definition 22, there must exist a regular rule, H :− L1, . . . , Ln, in ground(P),
such that H matches A, and for all Li, 1 ≤ i ≤ n: (i) if Li is a positive literal,
then valb

�Kα−1
(Li) = t; and (ii) if Li is a negative literal, then valb

�T∞
(Li) = t.

Next we show that for all Li, 1 ≤ i ≤ n, Vb
I (Li) ≥ u. If Li is a positive literal, since

K̂α−1 ⊆ T ∪U by the induction hypothesis and valb
�Kα−1

(Li) = t, then it follows

that Vb
K(Li) = t, by Lemma 2. Thus Vb

I (Li) ≥ u by Lemma 1. We have proved
that T = T̂∞. Therefore, if Li is a negative literal, then Vb

J (Li) = Vb
�T∞

(Li) = t.

Thus Vb
I (Li) ≥ u by Lemma 1. Because I satisfies P, so I(A) = Vh

I (H) ≥ u.
Thus A ∈ T ∪ U.

(2) A ∈ TCP,�T∞
( K̂α−1 )

It must be true that A = o[m → v] c
code. So, by Definition 24, c[m] code

� o ∈ K̂α−1 ,
ec(o, m) /∈ IBP(T̂∞), mc(c, m, o) /∈ IBP(T̂∞), and ground(P) has a template
rule, R ≡ code(c) @this[m → v] :− B, such that for every literal L ∈ B‖o: (i) if
L is a positive literal then valb

�Kα−1
(L) = t; and (ii) if L is a negative literal then

valb
�T∞

(L) = t.

Because c[m] val
� o ∈ K̂α−1 , there must exist a successor ordinal ρ ≤ α−1 < α,

such that c[m] val
� o ∈ K̂ρ . It follows that c[m] val

� o ∈ ICc
P,�T∞

( K̂ρ−1 ). Therefore,

c 
= o, o : c ∈ K̂ρ−1 , and ov(c, m, o) /∈ IBP(T̂∞), by Definition 25. Note that
K̂ρ−1 ⊆ T ∪ U, by the induction hypothesis. We have proved that T = T̂∞.
It follows that o : c ∈ T ∪ U and ov(c, m, o) /∈ IBP(T). Therefore c[m] s.code

� I o or
c[m] w.code

� I o, by Lemma 4. Because ec(o, m) /∈ IBP(T̂∞), so ec(o, m) /∈ IBP(T).
Thus o[m] is not a strong explicit definition, by Definitions 23 and 4. Because
c[m → v]ex ∈ K̂α−1 ⊆ T ∪ U, it follows that I(c[m → v]ex) ≥ u.

Next we show that there is no x 
= c such that x[m] s.val
�I o or x[m] s.code

� I o. Sup-
pose, to the contrary, that there exists x 
= c such that x[m] s.val

�I o or x[m] s.code
� I o.

Then x[m] s.val
�M o or x[m] s.code

� M o, because I ≤ M. Thus x[m] val
� o ∈ T̂∞ or

x[m] code
� o ∈ T̂∞, by Lemma 12. Thus mc(c, m, o) ∈ IBP(T̂∞) by Definition 23,

which contradicts the fact that mc(c, m, o) /∈ IBP(T̂∞).
So far we have shown that c[m] s.code

� I o or c[m] w.code
� I o, o[m] is not a strong

explicit definition, and there is no x 
= c such that x[m] s.val
�I o or x[m] s.code

� I o.
Therefore, o must either strongly or weakly inherit R in I, by Definitions 16
and 16. So imodeI(R‖o) ≥ u. We already know that for every literal L ∈ B‖o:
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(i) if L is a positive literal then valb
�Kα−1

(L) = t; and (ii) if L is a negative

literal then valb
�T∞

(L) = t. Now we show that for all Li, 1 ≤ i ≤ n, Vb
I (Li) ≥ u.

If Li is a positive literal, since K̂α−1 ⊆ T ∪ U by the induction hypothesis and
valb

�Kα−1
(Li) = t, then it follows that Vb

K(Li) = t, by Lemma 2. Thus Vb
I (Li) ≥ u

by Lemma 1. Note that T = T̂∞. Therefore, if Li is a negative literal, then
Vb
J (Li) = Vb

�T∞
(Li) = t. Thus Vb

I (Li) ≥ u by Lemma 1. Therefore, Vb
I (L) ≥ u for

every literal L ∈ B‖o. It follows that Vb
I (B‖o) ≥ u. Moreover, imodeI(R‖o) ≥ u.

Because I is an object model of P, so I should satisfy R‖o. It follows that
I(o[m → v] c

code) ≥ u, by Definition 18. Thus o[m → v] c
code ∈ T ∪ U.

(3) A ∈ ICt ( K̂α−1 )
If A = o : c, then there exists x such that o : x ∈ K̂α−1 and x :: c ∈ K̂α−1 , by
Definition 25. Since K̂α−1 ⊆ T ∪ U by the induction hypothesis, it follows that
o : x ∈ T∪U and x :: c ∈ T∪U. So I(o : x) ≥ u and I(x :: c) ≥ u. Because I satisfies
the cautious ISA transitivity constraint, therefore I(o : c) ≥ u by Definitions 13
and 10. It follows that o : c ∈ T∪U. Similarly, if A = s :: c, then we can also show
that s :: c ∈ T ∪ U.

(4) A ∈ ICi
P,�T∞

( K̂α−1 )

It must be the case that A = o[m → v] c
val. It follows that c[m] val

� o ∈ K̂α−1 ,
c[m → v]ex ∈ K̂α−1 , ec(o, m) /∈ IBP(T̂∞), and mc(c, m, o) /∈ IBP(T̂∞), by
Definition 25. Because c[m] val

� o ∈ K̂α−1 , so there must exist a successor ordinal
ρ ≤ α − 1 < α, such that c[m] val

� o ∈ K̂ρ . Thus c[m] val
� o ∈ ICc

P,�T∞
( K̂ρ−1 ).

Therefore, by Definition 25, c 
= o, o : c ∈ K̂ρ−1 , c[m → z]ex ∈ K̂ρ−1 for some
z, and ov(c, m, o) /∈ IBP(T̂∞). Since K̂ρ−1 ⊆ K̂α−1 ⊆ T ∪ U by the induction
hypothesis and T = T̂∞, it follows that o : c ∈ T ∪ U, c[m → v]ex ∈ T ∪ U,
and ov(c, m, o) /∈ IBP(T). Thus c[m] s.val

�I o or c[m] w.val
� I o by Lemma 4. Because

ec(o, m) /∈ IBP(T̂∞), it follows that ec(o, m) /∈ IBP(T), and so o[m] is not a
strong explicit definition, by Definitions 23 and 4. Because c[m → v]ex ∈ T ∪U,
it follows that I(c[m → v]ex) ≥ u.

Now we show that there is no x 
= c such that x[m] s.val
�I o or x[m] s.code

� I o. Suppose,
to the contrary, that there exists x 
= c such that x[m] s.val

�I o or x[m] s.code
� I o. Then

x[m] s.val
�M o or x[m] s.code

� M o, because I ≤ M. It follows that x[m] val
� o ∈ T̂∞ or

x[m] code
� o ∈ T̂∞, by Lemma 12. Thus mc(c, m, o) ∈ IBP(T̂∞) by Definition 23,

which contradicts the fact that mc(c, m, o) /∈ IBP(T̂∞).

So far we have shown that o[m] is not a strong explicit definition, c[m] s.val
�I o

or c[m] w.val
� I o, I(c[m → v]ex) ≥ u, and there is no x 
= c such that x[m] s.val

�I o
or x[m] s.code

� I o. Because I satisfies the cautious inheritance constraint, therefore
I(o[m → v] c

val) ≥ u, by Definition 14. So o[m → v] c
val ∈ T ∪ U.

We have shown that in all four possible cases, if A ∈ K̂α , then A ∈ T ∪ U. It
follows that T ∪ U ⊇ K̂α . This completes the induction step.
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A.3 Lemmas and Propositions Supporting Theorem 6 in Section 10

Lemma 17. Let Pwf be the well-founded rewriting of an F-logic KB P and Iwf

be a subset of HBPwf . Then lfp(CPwf ,Iwf ) is in normal form.

Lemma 18. Let Pwf be the well-founded rewriting of an F-logic KB P, Î a
subset of ĤBP, Iwf a subset of HBPwf which is isomorphic to Î and is in normal
form, and G a ground positive literal. Then valb

�I (¬G) = t iff ρb(G) /∈ Iwf .

Proposition 8. Let Pwf be the well-founded rewriting of an F-logic KB P, Iwf

a subset of HBPwf which is in normal form, and Î a subset of ĤBP. If Iwf is
isomorphic to Î , then lfp(CPwf ,Iwf ) is isomorphic to lfp(TP,�I ).

Proof. Let Jwf = lfp(CPwf ,Iwf ) and Ĵ = lfp(TP,�I ). First we will show that all of
the following conditions are true:

(1) for all o, c: isa(o, c) ∈ Jwf iff o : c ∈ Ĵ
(2) for all s, c: sub(s, c) ∈ Jwf iff s :: c ∈ Ĵ
(3) for all s, m, v: exmv(s, m, v) ∈ Jwf iff s[m → v]ex ∈ Ĵ
(4) for all o, m, v, c: vamv(o, m, v, c) ∈ Jwf iff o[m → v] c

val ∈ Ĵ
(5) for all o, m, v, c: comv(o, m, v, c) ∈ Jwf iff o[m → v] c

code ∈ Ĵ
(6) for all c, m, o: vacan(c, m, o) ∈ Jwf iff c[m] val

� o ∈ Ĵ
(7) for all c, m, o: cocan(c, m, o) ∈ Jwf iff c[m] code

� o ∈ Ĵ
I. ⇒

Let us define:

Swf
0 = ∅ Ŝ0 = ∅ for limit ordinal 0

Swf
α = CPwf ,Iwf (Swf

α−1) Ŝα = TP,�I ( Ŝα−1 ) for successor ordinal α

Swf
α =

⋃
β<α

Swf
β Ŝα =

⋃
β<α

Ŝβ for limit ordinal α 
= 0

Swf∞ =
⋃
α

Swf
α Ŝ∞ =

⋃
α

Ŝα

Then Swf
∞ = lfp(CPwf ,Iwf ) and Ŝ∞ = lfp(TP,�I ). We will prove by transfinite

induction that for any ordinal α and for all o, s, c, m, v, the following conditions
are true:

(1) if isa(o, c) ∈ Swf
α then o : c ∈ Ŝα

(2) if sub(s, c) ∈ Swf
α then s :: c ∈ Ŝα

(3) if exmv(s, m, v) ∈ Swf
α then s[m → v]ex ∈ Ŝα

(4) if vamv(o, m, v, c) ∈ Swf
α then o[m → v] c

val ∈ Ŝα

(5) if comv(o, m, v, c) ∈ Swf
α then o[m → v] c

code ∈ Ŝα

(6) if vacan(c, m, o) ∈ Swf
α then c[m] val

� o ∈ Ŝα

(7) if cocan(c, m, o) ∈ Swf
α then c[m] code

� o ∈ Ŝα
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The case for a limit ordinal α is trivial. Now let α be a successor ordinal. So
Swf

α = CPwf ,Iwf (Swf
α−1). First we show that for any ground positive literal L, if

ρb(L) ∈ Swf
α−1, then valb

�Sα−1
(L) = t: (i) If L = o : c, then ρb(L) = isa(o, c). It

follows that o : c ∈ Ŝα−1 by the induction hypothesis. Thus valb
�Sα−1

(o : c) = t;

(ii) Similarly, we can show if ρb(L) = sub(s, c) ∈ Swf
α−1, then valb

�Sα−1
(s :: c) = t;

(iii) If L = o[m → v], then ρb(L) = mv(o, m, v). Note that Swf
γ ⊆ Swf

α−1 for all
γ ≤ α − 1. Therefore, there must exist a successor ordinal ρ ≤ α − 1 such that
mv(s, m, v) ∈ Swf

ρ = CPwf ,Iwf (Swf
ρ−1). It follows that exmv(o, m, v) ∈ Swf

ρ−1, or
there is c such that vamv(o, m, v, c) ∈ Swf

ρ−1 or comv(o, m, v, c) ∈ Swf
ρ−1, according

to the trailer rules in Definition 38. Thus o[m → v]ex ∈ Ŝρ−1 , or there is c such
that o[m → v] c

val ∈ Ŝρ−1 or o[m → v] c
code ∈ Ŝρ−1 , by the induction hypothesis.

Clearly, Ŝρ−1 ⊆ Ŝα−1 . Thus valb
�Sα−1

(o[m → v]) = t.
Now consider the following cases:

(1) isa(o, c) ∈ Swf
α and isa(o, c) is derived via a rule Rwf ∈ ground(Pwf ) which

is rewritten from a regular rule R ∈ ground(P).
Then Rwf ≡ isa(o, c) :− ρb(C1), . . . , ρb(Cm), ¬ ρb(G1), . . . ,¬ ρb(Gn) must be the
rewriting of R ≡ o : c :− C1, . . . ,Cm, ¬G1, . . . ,¬Gn, where Ci, 1 ≤ i ≤ m, and Gj,
1 ≤ j ≤ n, are positive literals. By Definition 39, each ρb(Ci) ∈ Swf

α−1 and each
ρb(Gj) /∈ Iwf . Following the above claim, valb

�Sα−1
(Ci) = t for all 1 ≤ i ≤ m.

Moreover, Iwf is isomorphic to Î and is in normal form, therefore valb
�I (¬Gj) = t

for all 1 ≤ j ≤ n, by Lemma 18. So o : c ∈ RCP,�I ( Ŝα−1 ) ⊆ TP,�I ( Ŝα−1 ) = Ŝα ,
by Definitions 22 and 26.

(2) isa(o, c) ∈ Swf
α and isa(o, c) is derived via a trailer rule Rwf in ground(Pwf ).

Then there exists s such that Rwf = isa(o, c) :− isa(o, s), sub(s, c). It follows
that isa(o, s) ∈ Swf

α−1 and sub(s, c) ∈ Swf
α−1. Thus o : s ∈ Ŝα−1 and s :: c ∈ Ŝα−1

by the induction hypothesis. So o : c ∈ ICt( Ŝα−1 ) ⊆ TP,�I ( Ŝα−1 ) = Ŝα , by
Definitions 25 and 26.

(3) sub(s, c) ∈ Swf
α and sub(s, c) is derived via a rule Rwf ∈ ground(Pwf ) which

is rewritten from a regular rule R ∈ ground(P).
Similarly to (1), we can show that s :: c ∈ Ŝα .

(4) sub(s, c) ∈ Swf
α and sub(s, c) is derived via a trailer rule Rwf in ground(Pwf ).

Similarly to (2), we can show that s :: c ∈ Ŝα .

(5) exmv(s, m, v) ∈ Swf
α

Then exmv(s, m, v) must be derived via a rule Rwf ∈ ground(Pwf ) which is
rewritten from a regular rule R ∈ ground(P). Similarly to (1), we can also show
that s[m → v]ex ∈ Ŝα .

(6) vamv(o, m, v, c) ∈ Swf
α

By Definition 38, vamv(o, m, v, c) should be derived via a trailer rule from
ground(Pwf ). So vacan(c, m, o) ∈ Swf

α−1, exmv(c, m, v) ∈ Swf
α−1, ex(o, m) /∈ Iwf ,
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and multi(c, m, o) /∈ Iwf . Thus c[m] val
� o ∈ Ŝα−1 and c[m → v]ex ∈ Ŝα−1 , by

the induction hypothesis. Since Iwf is isomorphic to Î , ec(o, m) /∈ IBP( Î ) and
mc(c, m, o) /∈ IBP( Î ). Thus o[m → v] c

val ∈ ICi
P,�I ( Ŝα−1 ) ⊆ TP,�I ( Ŝα−1 ) = Ŝα ,

by Definitions 25 and 26.

(7) comv(o, m, v, c) ∈ Swf
α

Then comv(o, m, v, c) must be derived via a trailer rule. So cocan(c, m, o) ∈ Swf
α−1,

ins(o, m, v, c) ∈ Swf
α−1, ex(o, m) /∈ Iwf , and multi(c, m, o) /∈ Iwf . By the induc-

tion hypothesis, c[m] code
� o ∈ Ŝα−1 . Since Iwf is isomorphic to Î , it follows that

ec(o, m) /∈ IBP( Î ), mc(c, m, o) /∈ IBP( Î ). Clearly, ins(o, m, v, c) must be derived
via a rule Rwf ≡ ins(o, m, v, c) :− ρb(C1), . . . , ρb(Cm), ¬ ρb(G1), . . . ,¬ ρb(Gn), in
ground(Pwf ), which is rewritten from the following template rule in ground(P),
R ≡ code(c) @this[m → v] :− B1, . . . ,Bm, ¬F1, . . . ,¬Fn, where Bi and Fj are
positive literals, Ci = (Bi)‖o and Gj = (Fj)‖o, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Similarly to (1), we can show that valb
�Sα−1

((Bi)‖o) = t for all 1 ≤ i ≤ m and

valb
�I (¬ (Fj)‖o) = t for all 1 ≤ j ≤ n. It follows that by Definitions 24 and 26,

o[m → v] c
val ∈ TCP,�I ( Ŝα−1 ) ⊆ TP,�I ( Ŝα−1 ) = Ŝα .

(8) vacan(c, m, o) ∈ Swf
α

Then vacan(c, m, o) must be derived via a trailer rule in ground(Pwf ). It follows
that isa(o, c) ∈ Swf

α−1, exmv(c, m, v) ∈ Swf
α−1, c 
= o, and override(c, m, o) /∈ Iwf ,

by Definition 38. So o : c ∈ Ŝ α−1 and c[m → v]ex ∈ Ŝα−1 , by the induction
hypothesis. Moreover, ov(c, m, o) /∈ IBP( Î ), since Iwf is isomorphic to Î . Thus
c[m] val

� o ∈ ICc
P,�I ( Ŝα−1 ) ⊆ TP,�I ( Ŝα−1 ) = Ŝα , by Definitions 25 and 26.

(9) cocan(c, m, o) ∈ Swf
α

Then cocan(c, m, o) must be derived via a trailer rule in ground(Pwf ). It follows
that isa(o, c) ∈ Swf

α−1, codedef(c, m) ∈ Swf
α−1, c 
= o, and override(c, m, o) /∈ Iwf ,

by Definition 38. Note that o : c ∈ Ŝ α−1, by the induction hypothesis, and
ov(c, m, o) /∈ IBP( Î ), because Iwf is isomorphic to Î . Since codedef(c, m)∈Swf

α−1,
there is a template rule in P which specifies the instance method m for class c,
by Definition 38. It follows that c[m] code

� o ∈ ICc
P,�I ( Ŝα−1 ) ⊆ TP,�I ( Ŝα−1 ) = Ŝα ,

by Definitions 25 and 26.

II. ⇐
Let us construct an extended atom set K̂ from Jwf as follows: generate one

o : c in K̂ for every isa(o, c) in Jwf , one s :: c in K̂ for every sub(s, c) in Jwf ,
one s[m → v]ex in K̂ for every exmv(s, m, v) in Jwf , one o[m → v] c

val in K̂ for
every vamv(o, m, v, c) in Jwf , one o[m → v] c

code in K̂ for every comv(o, m, v, c)
in Jwf , one c[m] val

� o in K̂ for every vacan(c, m, o) in Jwf , and one c[m] code
� o in

K̂ for every cocan(c, m, o) in Jwf . Clearly, to prove that the conditions are true,
it suffices to show that K̂ ⊇ Ĵ .

Because Ĵ = lfp(TP,�I ), therefore, to show that K̂ ⊇ Ĵ , it suffices to show

that TP,�I ( K̂ ) ⊆ K̂ according to the conventional fixpoint theory [28]. Recall
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that by Definitions 26 and 25,

TP,�I ( K̂ ) = RCP,�I ( K̂ ) ∪ TCP,�I ( K̂ ) ∪ ICt( K̂ ) ∪ ICc
P,�I ( K̂ ) ∪ ICi

P,�I ( K̂ )

Let A be any atom in TP,�I ( K̂ ). There are five possible cases to consider:

(1) A ∈ RCP,�I ( K̂ )
Then there is a regular rule R ≡ H :− C1, . . . ,Cm, ¬G1, . . . ,¬Gn in ground(P),
such that H matches A, Ci (1 ≤ i ≤ m) and Gj (1 ≤ j ≤ n) are positive literals,
valb

�K (Ci) = t for all 1 ≤ i ≤ m and valb
�I (¬Gj) = t for all 1 ≤ j ≤ n. Consider the

rewriting Rwf of R, ρh(H) :− ρb(C1), . . . , ρb(Cm), ¬ ρb(G1), . . . ,¬ ρb(Gn). First
we show ρb(Ci) ∈ Jwf for all 1 ≤ i ≤ m: (i) If Ci = o : c, then ρb(Ci) = isa(o, c).
Since valb

�K (o : c) = t, it follows that o : c ∈ K̂ by Definition 1. Therefore,
isa(o, c) ∈ Jwf , by the construction of K̂ ; (ii) Similarly, we can show if Ci = s :: c,
then ρb(Ci) = sub(s, c) ∈ Jwf ; (iii) If Ci = s[m → v], then ρb(Ci) = mv(s, m, v).
Since valb

�K (s[m → v]) = t, so s[m → v]ex ∈ K̂ , or there exists c such that
s[m → v] c

val ∈ K̂ or s[m → v] c
code ∈ K̂ . So exmv(s, m, v) ∈ Jwf , or there exists

c such that vamv(s, m, v, c) ∈ Jwf or comv(s, m, v, c) ∈ Jwf , by the construction
of K̂ . Because Jwf = CPwf ,Iwf (Jwf ), therefore mv(s, m, v) ∈ Jwf , according to the
trailer rules in Definition 38. By Lemma 18, ρb(Gj) /∈ Iwf for all 1 ≤ j ≤ n. So
ρh(H) ∈ CPwf ,Iwf (Jwf ) = Jwf , by Definition 39. It follows that: (i) If A = o : c,
then H = o : c. So ρh(H) = isa(o, c) ∈ Jwf , thus o : c ∈ K̂ ; (ii) Similarly, if
A = s :: c, then s :: c ∈ K̂ ; (iii) If A = s[m → v]ex, then H = s[m → v]. So
ρh(H) = exmv(s, m, v) ∈ Jwf , thus s[m → v]ex ∈ K̂ .

(2) A ∈ TCP,�I ( K̂ )
It must be the case that A = o[m → v] c

code. It follows that mc(c, m, o) /∈ IBP( Î ),
ec(o, c) /∈ IBP( Î ), c[m] code

� o ∈ K̂ , and ground(P) has a template rule, R, of the
form code(c) @this[m → v] :− C1, . . . ,Cm, ¬G1, . . . ,¬Gn, where Ci (1 ≤ i ≤ m)
and Gj (1 ≤ j ≤ n) are positive literals, valb

�K ((Ci)‖o) = t for all 1 ≤ i ≤ m and
valb

�I (¬ (Gj)‖o) = t for all 1 ≤ j ≤ n. Consider the rewriting Rwf of R, such
that Rwf ≡ ins(o, m, v, c) :− ρb(B1), . . . , ρb(Bm), ¬ ρb(F1), . . . ,¬ ρb(Fn), where
Bi = (Ci)‖o for all 1 ≤ i ≤ m and Fj = (Gj)‖o for all 1 ≤ j ≤ n. Similarly to (1),
we can also show that ρb(Bi) ∈ Jwf for all 1 ≤ i ≤ m. By Lemma 18, ρb(Fj) /∈ Iwf

for all 1 ≤ j ≤ n. So ins(o, m, v, c) ∈ CPwf ,Iwf (Jwf ) = Jwf , by Definition 39.
Because c[m] code

� o ∈ K̂ , therefore cocan(c, m, o) ∈ Jwf , by the construction
of K̂ . Note that ec(o, c) /∈ IBP( Î ) and mc(c, m, o) /∈ IBP( Î ). Since Iwf is
isomorphic to Î , it follows that ex(o, c) /∈ Iwf and multi(c, m, o) /∈ Iwf . So
comv(o, m, v, c) ∈ CPwf ,Iwf (Jwf ) = Jwf , according to the trailer rules of Pwf and
Definition 39. It follows that o[m → v] c

code ∈ K̂ .

(3) A ∈ ICt ( K̂ )
If A = o : c, then there is x such that o : x ∈ K̂ , x :: c ∈ K̂ . So isa(o, x) ∈ Jwf and
sub(x, c) ∈ Jwf , by the construction of K̂ . Thus isa(o, c) ∈ CPwf ,Iwf (Jwf ) = Jwf ,
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by Definition 39 and the trailer rules of Pwf . Thus o : c ∈ K̂ . Similarly, we can
show that if A = s :: c, then s :: c ∈ K̂ .

(4) A ∈ ICc
P,�I ( K̂ )

If A = c[m] val
� o, then o : c ∈ K̂ , c 
= o, c[m → v]ex ∈ K̂ , and ov(c, m, o) /∈ Î , by

Definition 25. Because K̂ is constructed from Jwf and Iwf is isomorphic to Î ,
it follows that isa(o, c) ∈ Jwf , exmv(c, m, v) ∈ Jwf , and override(c, m, o) /∈ Iwf .
So vacan(c, m, o) ∈ CPwf ,Iwf (Jwf ) = Jwf , by Definition 39 and the trailer rules
of Pwf . Thus c[m] val

� o ∈ K̂ . Similarly, if A = c[m] code
� o, we can also show that

c[m] code
� o ∈ K̂ .

(5) A ∈ ICi
P,�I ( K̂ )

Then A = o[m → v] c
val, and c[m] val

� o ∈ K̂ , c[m → v]ex ∈ K̂ , ec(o, m) /∈ Î ,
mc(c, m, o) /∈ Î , by Definition 25. Because K̂ is constructed from Jwf , and Iwf

is isomorphic to Î , it follows that vacan(c, m, o) ∈ Jwf , exmv(c, m, v) ∈ Jwf ,
ex(o, m) /∈ Iwf , multi(c, m, o) /∈ Iwf . So by Definition 39 and the trailer rules of
Pwf , vamv(o, m, v, c) ∈ CPwf ,Iwf (Jwf ) = Jwf . Thus o[m → v] c

val ∈ K̂ .

Finally, to finish the proof for the claim that Jwf is isomorphic to Ĵ , we still
need to show that the following conditions are true:

(1) for all o, m: ex(o, m) ∈ Jwf iff ec(o, m) ∈ IBP( Ĵ )
(2) for all c, m, o: multi(c, m, o) ∈ Jwf iff mc(c, m, o) ∈ IBP( Ĵ )
(3) for all c, m, o: override(c, m, o) ∈ Jwf iff ov(c, m, o) ∈ IBP( Ĵ )

Note that ex/2, multi/3, and override/3 can only be derived via the trailer rules
as defined in Definition 38. Moreover, Jwf = CPwf ,Iwf (Jwf ). It follows that:

(1) ex(o, m) ∈ Jwf , iff there exists v such that exmv(o, m, v) ∈ Jwf , iff there
exits v such that o[m → v]ex ∈ Ĵ , iff ec(o, m) ∈ IBP( Ĵ ).

(2) multi(c, m, o) ∈ Jwf , iff there exists x 
= c such that vacan(x, m, o) ∈ Jwf or
cocan(x, m, o) ∈ Jwf , iff there is x 
= c such that x[m] val

� o ∈ Ĵ or x[m] code
� o ∈ Ĵ ,

iff mc(c, m, o) ∈ IBP( Ĵ ).

(3) override(c, m, o) ∈ Jwf , iff there exists some x, such that x 
= c, x 
= o,
sub(x, c) ∈ Jwf , isa(o, x) ∈ Jwf , and there is v such that exmv(x, m, v) ∈ Jwf or
codedef(x, m) ∈ Jwf , iff there is x such that x 
= c, x 
= o, x :: c ∈ Ĵ , o : x ∈ Ĵ ,
and there is v such that x[m → v]ex ∈ Ĵ or there is a template rule in P which
specifies the instance method m for class c, iff ov(c, m, o) ∈ IBP( Ĵ ).

Proposition 9. Let α range over all ordinals, then Twf
α , Twf

∞ , Uwf
α , and Uwf

∞
are all in normal form. (The notations used here are from Definition 43.)

Proof. First we show by transfinite induction that Twf
α is in normal form for

any ordinal α. The case is trivial for limit ordinal 0. If α is a successor ordinal,
then Twf

α = SPwf (Uwf
α−1) = lfp(CPwf ,Uwf

α−1
). It follows that Twf

α is in normal form,

by Lemma 17. Now suppose α 
= 0 is a limit ordinal, Twf
α =

⋃
β<α Twf

β . Ac-
cording to Definition 42, we need to show for all o, m, v: mv(o, m, v) ∈ Twf

α
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iff exmv(o, m, v) ∈ Twf
α , or there is c such that vamv(o, m, v, c) ∈ Twf

α or
comv(o, m, v, c) ∈ Twf

α .

(1) ⇒
If mv(o, m, v) ∈ Twf

α , then there is β < α such that mv(o, m, v) ∈ Twf
β . By the

induction hypothesis, Twf
β ⊆ Twf

α is in normal form. Thus exmv(o, m, v) ∈ Twf
β ,

or there is c such that vamv(o, m, v, c) ∈ Twf
β or comv(o, m, v, c) ∈ Twf

β .

(2) ⇐
If exmv(o, m, v) ∈ Twf

α , then there is β < α such that exmv(o, m, v) ∈ Twf
β . It fol-

lows that mv(o, m, v) ∈ Twf
β ⊆ Twf

α , since Twf
β is in normal form by the induction

hypothesis. On the other hand, if there exists c such that vamv(o, m, v, c) ∈ Twf
α

or vamv(o, m, v, c) ∈ Twf
α , then there is γ < α such that vamv(o, m, v, c) ∈ Twf

γ

or comv(o, m, v, c) ∈ Twf
γ . It follows that mv(o, m, v, c) ∈ Twf

γ ⊆ Twf
α , since Twf

γ

is in normal form by the induction hypothesis.

Similarly, we can also prove that Twf∞ is in normal form. Moreover, for any
ordinal α, Uwf

α = SPwf (Twf
α ) = lfp(CPwf ,Twf

α
). It follows that Uwf

α is in normal
form, by Lemma 17. Similarly, we can show that Uwf∞ is in the normal form.
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Abstract. The problem of identifying objects in databases that refer to
the same real world entity, is known, among others, as duplicate detec-
tion or record linkage. Objects may be duplicates, even though they are
not identical due to errors and missing data. Typical current methods
require deep understanding of the application domain or a good repre-
sentative training set, which entails significant costs. In this paper we
present an unsupervised, domain independent approach to duplicate de-
tection that starts with a broad alignment of potential duplicates, and
analyses the distribution of observed similarity values among these po-
tential duplicates and among representative sample non-duplicates to
improve the initial alignment. Additionally, the presented approach is
not only able to align flat records, but makes also use of related ob-
jects, which may significantly increase the alignment accuracy. Evalua-
tions show that our approach supersedes other unsupervised approaches
and reaches almost the same accuracy as even fully supervised, domain
dependent approaches.

1 Introduction

The goal of data integration is to provide uniform, non-redundant access to a
set of typically heterogeneous data sources. If the sources contain overlapping
data, not only their schemas need to be integrated, but also their instances,
i.e., duplicate instances that refer to the same real world object need to be to
detected and merged.

Traditional scenarios for duplicate detection are data warehouses, which are
populated by several data sources. Analyses on the data warehouse influences
business decisions, therefore a high data quality resulting from the populating is
of high importance. This is in general done by what is known as data cleansing
process, which also detects and removes duplicates. Reaching a high data quality
with a data cleansing process is currently very costly.

More recently duplicate detection is also arising in ad-hoc integration over the
internet, e.g., in P2P, web service or grid settings, where datasets and services
are virtually integrated for temporary applications. In such scenarios no long
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and expensive data cleansing process can be carried out, but good duplicate
estimations must be available directly.

This paper describes a method for unsupervised duplicate detection by us-
ing a representative set of sample non-duplicates. These sample non-duplicates
can be obtained under the assumption that individual data sources are duplicate
free. The approach starts with a set of potential duplicates and a set of represen-
tative sample non-duplicates identified in a preprocessing phase and iteratively
determines the matching probability of the potential duplicates by analyzing the
distribution of observed similarities among the potential duplicates and among
the non-duplicates. The approach can be alternatively used with either a re-
finement of the Fellegi-Sunter model for record linkage [1], which is able to use
continuous similarity measures and takes attribute dependencies into account, or
it can be used with machine learning techniques like Support Vector Machines
(SVM) [2]. Further the method can be simply extended to be used with not
only flat records, but on graph data models consisting of interrelated objects.
It is shown that such an extension also increases the accuracy of the duplicate
detection process.

In more detail, the contributions of this paper are the following:

– a method for unsupervised detection of duplicates between two data sources
– a way to automatically infer a representative sample of non-duplicates that

can be used by a duplicate decision model to increase the decision accuracy
– the usage of the Fellegi-Sunter model for record linkage [1] with such sample

non-duplicates
– the usage of Support Vector Machines with such sample non-duplicates
– extensions to the classic Fellegi-Sunter model for determining the parameters

without the independence assumption and using continuous similarity values;
a probabilistic model that simplifies finding a good threshold on the result;
the handling of null values and multi-valued attributes

– an extension to detect duplicates not only on flat records, but on interrelated
objects

The remainder of this paper is organized as follows. Section 1.1 gives a more
formal definition of the problem of duplicate detection. Section 2 summarizes
related work and and briefly introduces into the Fellegi-Sunter model. Section 3
gives an overview of the architecture and explains how the representative sample
non-duplicates can be obtained. Section 4 presents the extensions to the Fellegi-
Sunter model and shows how it can make use of the sample non-duplicates.
Section 5 presents the results of the evaluation of our approach compared to
other approaches. Finally Section 6 concludes and shows potentials for future
work.

1.1 Problem Definition

The problem of detecting duplicates can be defined as follows: Given two sets
of objects A and B divide the set of all object-pairs (a, b) ∈ A × B into a set
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of matching object-pairs M and unmatching object-pairs U . Sets are denoted
by upper-case letters, individual instances by lower-case letters. An object is
basically a vector of attributes (also called fields, properties or features), thus,
an object-pair is a vector of attribute-pairs.

Fig. 1. General architecture of a duplicate detection system

In general the overall duplicate detection process consists of several phases
as illustrated in Figure 1. The first phase, often called blocking, tries to effi-
ciently find a candidate set of duplicates, then a second phase, sometimes called
matching, performs the actual duplicate decision. The matching phase in general
involves an in-depth comparison of the candidate duplicate pairs, i.e., compar-
ing the individual attribute-pairs, which results in what is called a comparison
vector γ[a, b] for every candidate pair. The individual components of the com-
parison vector (γi[a, b]) represent the comparison results between the individual
attribute-pairs. These individual comparison results can be boolean (attribute
matches or does not match), discrete (e.g., matches, possibly matches or does
not match) or continuous (e.g., attribute values have a similarity of 0.2).

The task for the matching algorithm is then to classify such a given compari-
son vector γ[a, b] into the sets M or U by some kind of decision model. Therefore
the components of the comparison vector must be combined to an overall result.
It can be easily seen that the individual attributes do not have the same rele-
vance for this overall result. E.g., a matching ”person name” is a much stronger
indication for a duplicate record than a matching ”year of birth”, because of the
higher uniqueness of ”person name” in contrast to ”year of birth”. However,
a non-matching ”year of birth” is a strong indication for a non-duplicate, may
be even higher as a slightly different ”person name”, under the assumption of a
high reliability for ”year of birth”.

2 Related Work

Methods from the Database Community In the database community a few know-
ledge-intensive approaches have been developed. Hernandez and Stolfo [3]
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present a two phase data cleansing approach based on key expressions for block-
ing and logic rules for the matching phase. The selection of appropriate keys as
well as the logic rules are both very knowledge-intensive tasks. Galhardas et al.
[4] present a framework for data cleansing based on a set of rules. This frame-
work is very flexible, but requires intensive human interaction and knowledge in
order to provide good rules. Monge and Elkan [5] compare instances based on a
concatenation of all attributes with the help of distance functions and present a
blocking algorithm. A concatenation of all attributes only produces reasonable
results if all data sources are complete, i.e., have no null values for attributes
and all attributes show the same relevance for duplicate detection. In our eval-
uation one baseline experiment also concatenates all attribute values and uses
the string distance between these concatenated strings as overall result.

The Fellegi-Sunter Model for Record Linkage Based on the initial ideas and
problem description of Newcombe [6], Fellegi and Sunter [1] defined a theory for
record linkage including relevance for individual attributes. To this end, they
define the following probabilities on the comparison vector γ[a, b] for an object
pair (a, b):

m(γ[a, b]) = P (γ[a, b] | (a, b) ∈ M) (1)

u(γ[a, b]) = P (γ[a, b] | (a, b) ∈ U) (2)

Here m(γ[a, b]) is the conditional probability of γ[a, b], given that (a, b) is an ele-
ment of M and u(γ[a, b]) is the conditional probability of γ[a, b], given that (a, b) is
an element of U . They have shown that the ratio w(γ[a, b]) = m(γ[a, b])/u(γ[a, b])
can then be used to decide for a duplicate, non-duplicate or potential duplicate.
To this end they define how to set the appropriate thresholds on w(γ[a, b]) given
acceptable error rates for false misses and false matches.

In order to determine the parameters u(γ[a, b]) and m(γ[a, b]) often a con-
ditional independence assumption between the individual components of the
comparison vector is made. Under this assumption the parameters u(γ[a, b]) and
m(γ[a, b]) can be computed using mi and ui for the individual probabilities for
the comparison vector component γi[a, b]:

m(γ[a, b]) = m1(γ1[a, b]) ∗ m2(γ2[a, b])...mk(γk[a, b]) (3)

u(γ[a, b]) = u1(γ1[a, b]) ∗ u2(γ2[a, b])...uk(γk[a, b]) (4)

This simplification only produces good results if the conditional independence
assumption really holds, which is often not the case for real data. E.g. in the
address domain the attributes street and city are not independent, as a particular
street is only present in one or a few cities.

Fellegi and Sunter propose two methods for determining the individual values
mi(γi[a, b]), one relies on additional knowledge of error rates in the values, the
second is limited on comparison vectors of size 3. Winkler [7] showed that the EM
algorithm (Expectation-Maximization) [8] can be used for unsupervised learning
of the m(γ[a, b]) and u(γ[a, b]) parameters under the independence assumption.
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Using the independence assumption is the second baseline experiment for our
approach.

Several approaches, e.g., from Winkler [9] and Larsen and Rubin [10] tried to
determine the m(γ[a, b]) and u(γ[a, b]) values in cases where conditional inde-
pendence does not hold. All these approaches try to explicitly model the depen-
dencies and only works for boolean variables.

Ravikumar and Cohen [11] present an unsupervised learning approach based
on the Fellegi-Sunter model that takes attribute dependencies into account and
uses continuous similarity measures. They use a hierarchical latent variable
graphical model to model dependencies between the individual attributes with
continuous values. They showed that their approach helps reducing overfitting
of dependency models. Their model is used as third baseline in our experiments.

Machine Learning Methods. Elfeky et al. [12] claim that probabilistic record
linkage models always have the disadvantage to handle only boolean or categor-
ical values and require a training set.1 Therefore they propose to use continuous
values with machine learning techniques either based on supervised training of
a classifier (e.g. some kind of decision model) or using unsupervised clustering
methods like k-means. However, building an appropriate training set is a man-
ual and knowledge-intensive task and simple clustering methods like k-means
are only able to identify clusters that are linear separable, which is in general
not the case for real world data.

The AI community has proposed various other approaches using supervised
learning. Cohen and Richman [13] learn to combine multiple similarity metrics to
identify duplicates. Bilenko and Mooney [14] learn in a first step distance metrics
for individual fields, and in a second step they learn a combining metric for
similarity between records using Support Vector Machines (SVM). Their results
are compared to ours in section 5. Tejada et al. [15] use a supervised learning
method that generates rules that describe which combination of thresholds on
the individual attributes are necessary to declare a pair as duplicate. Sarawagi
and Bhamidipaty [16] present an approach of active learning that reduces the
user-overhead for selecting an appropriate learning set.

A few more recent approaches try to take similarities between related ob-
jects in a graph data model into account, which is orthogonal to our approach.
Ananthakrishna et al. [17] use a co-occurrence similarity in addition to a simple
concatenation based string similarity. This co-occurrence similarity checks for
co-occurrences in the sets of related entities. Their approach is restricted to hi-
erarchical relationships. Domingos [18] take similarities between related objects
into account by setting up a network with a node for each record pair. This allows
to propagate duplicate detection results to related objects. Similarly Dong et al.
[19] build up a graph and propagate duplicate information to related objects.
Such naive propagation may also lead to significantly reduced precision, if an
errorneous duplicate detection is propagated through the graph. Bhattacharya
and Getoor [20] introduce new distance measures that take entity relationships

1 Our approach shows otherwise.
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into account. They have shown that this can be used for the duplicate detection
task. Pasula et al. [21] introduce a generative probability model for the related
problem of ”identity uncertainty” based on probabilistic relational networks.

3 Extending the Fellegi-Sunter Model

The Fellegi-Sunter model uses the ratio w(γ[a, b]) = m(γ[a, b])/u(γ[a, b]) as de-
cision function. The problems using this function are in general the following:
1. how to find a threshold on w(γ[a, b]); 2. how to determine the parameters
m(γ[a, b]) and u(γ[a, b]), when using continous similarity measures and taking
dependencies into account.

3.1 A Probability Interpretation for the Fellegi-Sunter Model

In order to intuitivly define an appropriate threshold that is independent of
the concrete application and data, a probability interpretation for the Fellegi-
Sunter model is defined as the conditional probability of a and b being duplicates
(element of M), given the comparison vector γ[a, b]. This conditional probability
can be calculated as follows:

P ((a, b) ∈ M | γ[a, b]) =
m(γ[a, b]) ∗ P (M)

m(γ[a, b]) ∗ P (M) + u(γ[a, b]) ∗ P (U)
(5)

This formula follows directly from the Bayes rule [2] and the total probability
theorem:

P ((a, b) ∈ M | γ[a, b]) =
m(γ[a, b]) ∗ P (M)

P (γ[a, b])
(6)

P (γ[a, b]) = m(γ[a, b]) ∗ P (M) + u(γ[a, b]) ∗ P (U) (7)

The probability P (M) is the general probability that two records are dupli-
cates and is defined as the ratio between the set of duplicates and the set of all
pairs:

P (M) =
|M |

|M | + |U | (8)

P (U) is simply the complement of P (M); P (U) = 1 − P (M). It can be easily
seen that P (M) is always very small and P (U) always nearly 1. In particular for
duplicate free individual data sets (A and B), P(M) is between 0 (no overlap)
and min(|A|,|B|)

|M|+|U| (one data set is a subset of the other).
The main difference to the original Fellegi-Sunter ratio is that now the value

range is {0,1}, whereas in Fellegi-Sunter it is {0,infinite}. This allows to use a
fixed threshold for duplicate decision, instead of the problem to find an appro-
priate threshold for every duplicate detection application, e.g., if the probability
is greater than 50% (> 0.5) than they are declared as duplicates. Additionally
our ratio introduces the term P (M). If there are only few duplicates expected,
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P (M) will be very small and accordingly the matching probability for potential
duplicates will be small as well.

However, the order based on the original Fellegi-Sunter ratio and the order
based on the Bayes formula 5, is always identical. This can be easily shown,
because the inequation based on Bayes (9) telling that the probability for the
comparison vector γ[a, b] belonging to a duplicate is less than the probability
for the comparison vector γ[x, y] can be transformed by simple inequality trans-
formations into the equal inequation based on the original Fellegi-Sunter ratio
(10):

m(γ[a, b]) ∗ P (M)
m(γ[a, b]) ∗ P (M) + u(γ[a, b]) ∗ P (U)

<
m(γ[x, y]) ∗ P (M)

m(γ[x, y]) ∗ P (M) + u(γ[x, y]) ∗ P (U)
(9)

m(γ[a, b])
u(γ[a, b])

<
m(γ[x, y])
m(γ[x, y])

(10)

3.2 Definition of the m(γ[a, b]) Parameter

In the most easiest case assuming independence between the attributes and
mapping the continuous similarity values of the comparison vector to boolean
values using some threshold, the probability mi(γi[a, b]) is the ratio between the
number of all pairs in M that match with this γi[a, b] to the size of M . Without
the independence assumption between the attributes, the probability m(γ) can
be defined as the ratio between the number of all pairs in M , where all individual
components of γ match, to the size of M .

mi(γi[a, b]) =
|{(x, y) ∈ M | γi[x, y] = γi[a, b]}|

|M | (11)

m(γ[a, b]) =
|{(x, y) ∈ M | ∀γi[x, y] = γi[a, b]}|

|M | (12)

In the case when the continuous similarity values should not be mapped to
boolean values the definition for m(γ[a, b]) is not so obvious. But using contin-
uous values is definitely preferrable, because value-pairs are not always clearly
categorizable as definite match or not match, but there is a whole range of sim-
ilarity, which makes it hard to define a good threshold.

In order to define the probability m(γ[a, b]) for the continuous case, the fol-
lowing assumption is made:

Assumption 1. The probability m(γ[a, b]) is monotonically increasing with the
increase of the similarity between value-pairs, i.e., if the similarity measures in
a γ[a, b] are greater than the similarity measures in γ[x, y], m(γ[a, b]) is greater
than m(γ[x, y]).

Using this assumption the independent probability mi(γi[a, b]) can be defined
to be the ratio between the number of all pairs in M whose γi[a, b] is less than
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or equal to γi[a, b], to the number of all pairs in M . Without the independence
assumption this corresponds to the number of all pairs in M whose comparison
vector is absolutely less than γ[a, b] to the number of all pairs in M .

mi(γi[a, b]) =
|{(x, y) ∈ M | γi[x, y] <= γi[a, b]}|

|M | (13)

m(γ[a, b]) =
|{(x, y) ∈ M | ∀γi[x, y] <= γi[a, b]}|

|M | (14)

3.3 Definition of the u(γ[a, b]) Parameter

u(γ[a, b]) is analogous to the definition for m(γ[a, b]). Equation (15) defines
ui(γi[a, b]) when assuming independence and using boolean values. Equation
(16) defines u(γ[a, b]) without the independence assumption.

ui(γi[a, b]) =
|{(x, y) ∈ U | γi[x, y] = γi[a, b]}|

|U | (15)

u(γ[a, b]) =
|{(x, y) ∈ U | ∀γi[x, y] = γi[a, b]}|

|U | (16)

In order to define the probability u(γ[a, b]) for the continuous case, the fol-
lowing assumption is made:

Assumption 2. The probability u(γ[a, b]) is monotonically increasing with the
decrease of the similarity between value-pairs, i.e., if the similarity measures in
a γ[a, b] are less than the similarity measures in γ[x, y], u(γ[a, b]) is greater than
u(γ[x, y]).

Using this assumption Equation (17) defines ui(γi[a, b]) for continuous values and
assuming independence. Equation (18) defines u(γ[a, b]) for continuous values
without the independence assumption.

ui(γi[a, b]) =
|{(x, y) ∈ U | γi[x, y] >= γi[a, b]}|

|U | (17)

u(γ[a, b]) =
|{(x, y) ∈ U | ∀γi[x, y] >= γi[a, b]}|

|U | (18)

4 Unsupervised Matching

This section presents the developed approach for the matching phase. The first
section explains the basic architecture, the following sections then present the
methods and algorithms of the individual modules in detail.



144 P. Lehti and P. Fankhauser

4.1 Overview

The architecture consists of the usual two phases that are blocking, which gen-
erates a set of potential duplicates, and matching, which compares the potential
duplicates in detail and finally decides for being an actual duplicate or not.
However, the matching phase in the approach takes not only a set of potential
duplicates (M ′) as input, but additionally a set of non-duplicates (U ′). This
additional input should enable the matching algorithm to work completely un-
supervised.

The idea is that the matching algorithm is able to remove the non-duplicates
from M ′ given the set of sample true non-duplicates of U ′. Therefore these sample
non-duplicates must be representative for the non-duplicates in M ′, which are
some kind of similar object-pairs, as otherwise they would not have been declared
as potential duplicates.

For a large family of applications this set of representative non-duplicates can
be generated in an unsupervised way. These applications are characterized by
the following properties:

– only duplicates between different data sources need to be detected
– these individual data sources themselves are more or less duplicate free

These high quality data sources typically occur in commercial settings like
webshops or product catalogs or other manually maintained data sources, e.g.,
the publication data bases DBLP [22] and CompuScience [23].

When these properties hold for the given application and data sources, the
following sets can be defined; Ω defines the set of all pairs within and between
the individual data sources:

Ω = A × A ∪ B × B ∪ A × B (19)

The set of duplicates M is a subset of the pairs only between the data sources:

M ⊂ A × B (20)

The set of non-duplicates U is the union of all pairs within the data sources
and the pairs between the data sources without M .

U = Ω \ M (21)

The set of potential duplicates M ′ is generated as usual by a blocking method
on the set of object-pairs between the data sources (A × B). It is therefore a
subset of all object-pairs between the data sources and also a superset of the
true M :

M ′ ⊂ A × B (22)

M ′ ⊇ M (23)

A representative set U ′ can now be generated by applying the same block-
ing algorithm to the sets of object-pairs within the individual data sources
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(A×A∪B×B). This set is a subset of U and shows the same kind of simi-
larity as the non-duplicates in M ′, because they were generated using the same
algorithm.

U ′ ⊂ A × A ∪ B × B (24)

U ′ ⊂ U (25)

This architecture is shown in Figure 2.

Fig. 2. Architecture of the duplicate detection system

If the properties do not hold for the given application, because duplicates
within a single data source should be detected or the individual data sources
contain too many duplicates, the set of non-duplicates U ′ must be generated
differently, e.g., by manually selecting such pairs. In the following, it is assumed
that these properties hold.

After the sets M ′ and U ′ are generated by the blocking module, a compari-
son module compares the given object-pairs in detail and produces comparison
vectors for all pairs in M ′ and U ′. Given these comparison vectors as input,
the decision module tries to identify actual non-duplicates in M ′ based on the
samples from U ′ and finally generates a set of duplicate pairs. This remaining
set of duplicates should be ranked by some kind of confidence into this decision.

The decision module is herein faced with the problem to find a way to seperate
the data points represented by their comparison vectors into the two classes
duplicates and non-duplicates.

4.2 The Comparison Module

The comparison module compares object-pairs in detail and creates a comparison
vector γ for every such object-pair. An individual component of this comparison
vector is a similarity measure for an individual attribute-pair. Such a similarity
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measure is defined to be greater if more similarity is detected, the range for
such a similarity value can be {-infinite,infinite}. Although one typical kind of
similarity measures are distance functions, which are dissimilarity measures with
a range of {0,1}, where 0 means identical and 1 stands for maximal distance.
These distances values are translated to a similarity measure by simply taking
the complement of it.

The influence on the overall matching performance of such similarity measures
can be enormous, i.e., a decision module has only a chance if the distribution
of the similarity values between the duplicates and the non-duplicates are sig-
nificantly different. But the selection of an appropriate similarity measure is
difficult, as the cause for differences between actually equivalent values can be
manifold:

– Typos: The easiest case are typos, where the same string contains wrong,
missing, additional or interchanged characters or tokens. Similarity measures
for this kind of errors are numerous and well studied [24]. They are in general
called distance functions, which are dissimilarity measures - the complement
of a similarity measure.

– Datatype Dependency: If a value is not a simple string, but some kind of prim-
itive datatype, simple string-based similarity measures often work poorly.
E.g. a year value of ”2000” and ”1999” do not have a single character in
common and would therefore be judged as very different by a string-based
similarity measure, in this case a simple arithmetic difference based similarity
measure would be much more effective. However, for the same datatype year
the values ”2001” and ”2010” would be better judged by the string-based
similarity, as a simple typo is possible.

– Domain Dependency: The most difficult case is, where an equivalence be-
tween values can only be recognized if additional domain knowledge is avail-
able. E.g. in the publication domain the two values for the conference event
”VLDB-95” and ”Int. Conference on Very Large Data Bases, 1995” look
very different and can only be recognized as equivalent, when knowing that
”VLDB” is a common abbreviation for ”Int. Conference on Very Large Data
Bases”.

Therefore the comparison module allows to use several similarity measures for
the same attribute-pair, like a string-edit-distance and an arithmetic difference
for a ”year” attribute, and stores the individual similarity values in individual
comparison vector components. That means the length of a comparison vector
may not be identical with the number of attribute-pairs.

Null Values. Datasets often contain optional attributes, i.e., attributes may con-
tain null values. E.g., in the person domain, the middle name of a person often
does either not exist or is not available. In general such null values cannot be
used by similarity functions.

Therefore the comparison module allows a comparison vector component to
be either a continuous similarity value, or ”null”, indicating that this similarity
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function was not able to calculate a similarity score for this attribute-pair. How a
null value is treated for the duplicate decision is the task of the decision module.

Multi-valued Attributes. So far only flat records are handled with the approach.
In order to extend it to multi-valued attributes, i.e., attributes that contain an
arbitrary number of individual values, e.g., the list of authors of a publication,
the approach must be slightly modified.

Comparing multi-valued attributes requires comparing all corresponding in-
dividual values and results in a sequence of similarity values, i.e., a comparison
vector itself. If one multi-valued attribute contains less individual values than the
other, this is seen as missing values, i.e., containing null values. The way of find-
ing the corresponding value depends on whether the values are ordered or not. If
the multi-valued attributes are ordered, e.g., the author names of a publication,
simply the values at the same position are compared. Unordered multi-valued
attributes require some form of set comparison, selecting the comparison vector
with the shortest length.

Using a comparison vector with arbitrary length ni directly as value within
the comparison vector (γ) of the object-pair to be examined, would result in in-
dependent distributions for every occuring length of this multi-valued attribute.
Therefore it is preferable to collapse the comparison vector of the multi-valued
attribute to a single similarity measure.

In order to collapse such a comparison vector, the following assumptions are
made:

– the relevance of every individual value is the same, i.e., the similarity of every
individual value contributes the same amount to the overall similarity of the
set.

– the similarities between the individual values are independent, i.e., there is
no dependency between the individual values.

Under these assumptions the individual similarity values γik can be collapsed
to a single similarity value by simply using the arithmetic mean of the individual
similarity values. If several similarity functions were used for the comparison of
the attribute-pairs, the mean of every such similarity function must be calcu-
lated.

γi =
∑ni

k γik

ni
(26)

Relationships. Beside multi-valued attributes in many data models also relation-
ships to other objects are possible. An example of such a relationship is the con-
ference paper to its conference. When supporting relationships in the approach,
it is necessary to compare the related objects. This is done in an independent du-
plicate detection process, which needs its own sets of potential duplicates (M1′)
and representative non-duplicates (U1′). In order to obtain these input sets, a
blocking phase is not necessary, but these sets can be obtained from the initial
potential duplicates M ′ and non-duplicates U ′. To this end, all distinct pairs
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of related objects from M ′ form M1′ and all distinct pairs of related objects
from U ′ form U1′. This initial set U1′ may still contain duplicates, because al-
though U ′ only contains clear non-duplicates, the related objects may even so be
duplicates, e.g., non-duplicates conference papers may still be published at the
same conference. However, because U ′ contains only pairs from the same source,
duplicate related objects must be identical and therefore directly identifiable as
such. That means U1′ can be easily filtered to contain only non-duplicates.

Using these sets M1′ and U1′ as input for a separate duplicate decision, all
related object-pairs get some kind of duplicate estimation score, which can then
be used as similarity value in the comparison vector for the initial duplicate
detection process.

However, relationships offer additional information that can be used for their
duplicate estimation. This is the number how often two related objects occur
together within potential duplicates. If this number is significantly higher than
they should be randomly, this strongly indicates duplicate related objects even
if their similarity score calculated by convential methods is low. Therefore an
additional kind of similarity measures is suggested in the case of relationships
using this information. Such similarity measures are known as association mea-
sures [25]. The most commonly used association measures in information theory
are the mutual information score [26] and the t-score [27].

It should be noted that not only explictly modeled relationships with objects
each consisting of several attributes can profit from such measures, but also
single attributes in flat record lists, which occur regurlarly and therefore can be
seen as unnormalized relations.

If relationships are cyclic then following such a relationship recursivly would
result in an infinite loop. Therefore relationships that refer to objects that are
currently estimated are ignored.

4.3 The Extended Fellegi-Sunter Model as Decision Model

The extended Fellegi-Sunter model as described in Section 3 can be used as
decision model given only the input sets M ′ and U ′. In this case only an approx-
imation for P ((a, b) ∈ M | γ[a, b]) can be calculated that is called P ′ based on
approximations of m′(γ[a, b]) and u′(γ[a, b]), which are introduced below:

P ′((a, b) ∈ M | γ[a, b]) =
m′(γ[a, b]) ∗ P ′(M)

m′(γ[a, b]) ∗ P ′(M) + u′(γ[a, b]) ∗ P ′(U)
(27)

This P ′ is used to identify actual non-duplicates in M ′ and new revised sets
M ′

1 and U ′
1 are constructed. To this end all object-pairs in M ′, whose probability

P ′ is below some threshold Θ, are moved to U ′
1. This threshold can be naturally

set to 50%, which corresponds to an equal probability for being a duplicate or a
non-duplicate. This is iteratively done until no more non-duplicates are identified
in M ′

t.
M ′

t+1 = {(a, b) ∈ M ′
t | P ′

t ((a, b) ∈ M | γ[a, b]) >= Θ} (28)

U ′
t+1 = U ′

t ∪ {(a, b) ∈ M ′
t | P ′

t ((a, b) ∈ M | γ[a, b]) < Θ} (29)
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This iteration always converges, because U ′
t+1 ⊇ U ′

t and M ′
t+1 ⊆ M ′

t. However,
in order that no true duplicates are moved into U ′

t, it is important that the
following condition holds:

Condition 1. The estimated probability P ′
t ((a, b) ∈ M | γ[a, b]) is never less

than the true probability for being a duplicate P ((a, b) ∈ M | γ[a, b]).

Pt((a, b) ∈ M | γ[a, b]) >= P ((a, b) ∈ M | γ[a, b]) (30)

The difference between P ′
t ((a, b) ∈ M | γ[a, b]) and the true P ((a, b) ∈ M |

γ[a, b]) result from the fact that the parameters m′
t(γ[a, b]), u′

t(γ)[a, b] and P ′
t (M)

can only be calculated from the given input sets M ′
t and U ′

t, which are not iden-
tical with M and U . Condition 1 can be broken down to the following sufficient
conditions:

Condition 2. m′
t(γ[a, b]) must always be greater or equal to the true m(γ[a, b]).

m′
t(γ[a, b]) >= m(γ[a, b]) (31)

Condition 3. u′
t(γ[a, b]) must always be less or equal to the true u(γ[a, b]).

u′
t(γ[a, b]) <= u(γ[a, b]) (32)

Condition 4. P ′
t (M) must always be greater or equal to the true P (M).

P ′
t (M) >= P (M) (33)

Determination of P ′
t . P ′

t (M) is defined as the ratio between the size of M ′
t to

the number of all possible pairs, which is definitely greater than the true P (M)
as M ′

t being a superset of M , therefore this definition meets Condition 4:

P ′
t (M) =

|M ′
t|

|Ω| (34)

Determination of m′
t(γ[a, b]). The parameter m′

t(γ[a, b]) for continuous values
in γ[a, b] and taking dependencies into account, is defined as the ratio of the
number of all pairs in M ′

t whose comparison vector is absolutely less than γ[a, b]
to the number of all pairs in M ′

t.

m′
t(γ[a, b]) =

|{(x, y) ∈ M ′
t | ∀γi[x, y] <= γi[a, b]}|

|M ′
t|

(35)

Although the nominator of this definition will always be greater than the true
value, it does not guarantee Condition 2, because the denominator will also be
greater as it is calculated on a superset of M . In order to fulfil the condition,
an upper bound for m′

t(γ[a, b]) is required that is guaranteed to be greater than
m(γ[a, b]). Therefore statistic confidence intervals are used that allow to specify
upper and lower bounds for the occurence of an event given the number of
observations of such an event within a sample.
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The ratio π = x/n between the number of all occurrences of such an event (x)
to the number of all observations (n) corresponds to the probability m′

t(γ[a, b]).
The lower bound πl and the upper bound πu for the ratio π are given in statistics
literature [28] via the following formulas:

πl =
x

x + (n − x + 1) ∗ Fl
(36)

πu =
(x + 1) ∗ Fu

n − x + (x + 1) ∗ Fu
(37)

with:
Fl{df1=2∗(n−x+1),df2=2∗x}(λ/2) (38)

Fu{df1=2∗(x+1),df2=2∗(n−x)}(λ/2) (39)

Where F denotes the F-distribution, df1 and df2 denote the two degrees of
freedom for the F-distribution and λ is the probability of error for these bounds,
e.g. for a 95% confidence interval λ is 5%.

This upper bound on m′
t(γ[a, b]) is used during iteration to guarantee the over-

estimation of P ′
t ((a, b) ∈ M | γ[a, b]). However, for the final matching estimation

of a pair always the truly observed m′
t(γ[a, b]) is used.

For boolean values in γ[a, b] or under the independence assumption the defi-
nition is analoguous to the definition in Section 3.2.

Determination of u′
t(γ[a, b]). The parameter u′

t(γ[a, b]) for continuous values in
γ[a, b] and taking dependencies into account, is defined as the ratio of the number
of all pairs in U ′

t whose comparison vector is absolutely greater than γ[a, b] to
the number of all pairs Ω.

u′
t(γ[a, b]) =

|{(x, y) ∈ U ′
t | ∀γi[x, y] >= γi[a, b]}|

|Ω| (40)

This definition does guarantee Condition 3 as the numerator is always less
than or equal to the true value as being calculated on a subset of U and the
denominator is always greater than the true value as being calculated on a
superset of U . Therefore u′(γ[a, b]) is always an underestimation of u(γ[a, b]). For
boolean values in γ[a, b] or under the independence assumption the definition is
analoguous to the definition in Section 3.3.

Based on the fact that U ′
t is only a subset of U it may happen that a rarely

occurring γ[a, b] can not be observed. This results in u′
t(γ[a, b]) to be 0 and

P ′
t ((a, b) ∈ M | γ[a, b]) to be 1 independent of the value of m′

t(γ[a, b]). This
problem is addressed by approximation, i.e. observing this case an approximation
for u′

t(γ[a, b]) is needed, which is slightly higher than 0.
The approximation that shows the best results is simply the fallback to the

independence assumption. Approximations like multi-dimensional linear inter-
polation are computationally very expensive and requires to find the nearest
larger and nearest smaller available points in every dimension, i.e. 2k points.
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Using the mean between a statistic upper bound for this γ occurence and 0
performed poorer as it is independent of the concrete values of the comparison
vector components, i.e. the 0 vector would get the same probability as a vector,
where only one component is very untypically.

However, this approximation is only used for the final estimation of the du-
plicate probability. For constructing the revised sets M ′

t and U ′
t the observed

probability of 0 for u′
t(γ[a, b]) is used, as otherwise Condition 3 could not be

guaranteed anymore.

4.4 Handling Null Values

The problem of handling null values occurs for the determination of u′
t(γ[a, b])

and m′
t(γ[a, b]), when one γi[a, b] component is a null value and the other is a

continuous similarity value. There are several ways to decide, if such components
match or not:

– A null value never matches a distance value. This basically means that com-
parison vectors with null values can only be compared with other comparison
vectors that also contain null values for exactly the same component, i.e.,
the sets U ′ and M ′ are split into subsets, one for each null value combina-
tion. These subsets might be very small depending on the input sets and this
would result in poor accuracy/confidence for the probabilities.

– A null value matches every distance value. This basically means that this
comparison vector component is ignored and has no further influence on the
resulting probabilities.

– The null value is replaced with a similarity value. This similariy value can
be the most probable value for this comparison vector component, which is
e.g. the mean value of all non-null similarity values for this component.

4.5 Machine Learning Methods as Decision Model

For machine learning methods the problem can be seen as classification problem,
where the unlabeled data points in M ′ should be classified into the two distinct
classes of duplicates M and non-duplicates U . In general, machine learning meth-
ods can be distinguished in supervised and unsupervised methods. Supervised
methods use a set of labeled examples to train a classification function, which is
then used to classify the unlabeled data points. State of the art for supervised
classification are Support Vector Machines (SVM) [2]. Unsupervised methods
are in general clustering algorithms, which try to separate the unlabeled data
points into two clusters of data points that seem to belong together based on
some distance between the data points. Examples for such clustering algorithms
are KMeans [29] and spectral clustering [30].

However, the problem at hand does have additional labeled data points for
only one class, which are the data points in U ′. Therefore these methods can not
be used in their usual way. Two state of the art machine learning methods are
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tried as decision models in the approach; the simple KMeans clustering and the
SVM classification algorithm.

Null values are handled by replacing them with the most probable similarity
value for this component, which is the mean of all non-null similarity values.

Simple KMeans. The KMeans algorithm tries to find two cluster centroids, such
that all data points in this cluster are nearer to their centroid than to the other.
To this end KMeans starts with initial centroids, assigns all data points to the
centroid that is nearest to them and afterwards calculates new centroids for the
identified clusters. This is done iteratively until the centroids stay fixed. As the
distances to the centroid are in general calculated by a simple euclidean distance,
the assumed cluster shape is spherical.

This is the main disadvantage of KMeans: it fails, if the cluster shape strongly
differs from a spherical shape. The features of the comparison vector in duplicate
detection usally show very different distributions (based on the uniqueness and
reliability of the attribute) and they may also depend on each other, which may
result in non-spherical cluster shapes.

In order to use KMeans, one has to specify the initial cluster centroids. In
the given scenario this can be achieved by calculating the centroid for the non-
duplicates out of U ′ and setting the centroid of the duplicates to 0.

Experiments using KMeans did either perform very poor (lower accuracy than
a baseline) or did fail completely (identifying random clusters). All this can be
explained with the distribution of the clusters is neither spherically shaped nor
linearly separable and therefore KMeans is not well suited for this scenario.

Iterative Support Vector Machines. Support Vector Machines try to find a hy-
perplane between the two classes, such that the margin between the hyperplane
and the data points of both classes is maximized. SVMs use kernel functions
that are able to separate many kinds of cluster shapes. SVMs need to be trained
with data points of both classes. Here the same trick as for the Fellegi-Sunter
model can be used, the set M ′ is assumed to contain only duplicates and is used
to train the SVM together with the clear non-duplicate data points from U ′.
This SVM is then used to classify M ′ and altough these data points were all
used as duplicate examples, the SVM will classify some as non-duplicates. In
another iteration these detected non-duplicates can then be used as additional
non-duplicate examples and a cleaner M ′

1 is used as better examples for the du-
plicates. This is done iteratively as no further non-duplicates are detected in M ′

t.
SVMs are parameterized and these parameters must in general be learned

from the training set. However, as no clean training sets exist, default parameter
settings are used in this approach and still show very good results.

5 Evaluation

This section shows the results of the evaluation of the matching method. In
detail the following objectives are met by the evaluation:
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– All presented decision models outperform a simple baseline method that
simply decides on the basis of an unweighted arithmetic mean of the distance
values.

– The presented extensions for the Fellegi-Sunter model for continuous dis-
tance values and taking dependencies into account outperform the classic
approaches.

– The SVM and Fellegi-Sunter based decision models outperform other state of
the art unsupervised models and are even nearly as good as fully supervised
methods.

– The used distance measure has an enormous impact on the results of the
decision module.

5.1 Datasets

For an evaluation a Restaurant and a Census data set are chosen, which were
previously used as benchmarks for duplicate detection, e.g. in [14,11]. The restau-
rant dataset contains 864 restaurant names and addresses with 112 duplicates,
composed of 533 and 331 restaurants assembled from Fodor’s and Zagat’s restau-
rant guides. These individual datasets are duplicate free. The attributes being
restaurant name, street address, city and cuisine. Table 1 shows a sample dupli-
cate record from this dataset.

Table 1. Sample duplicate records from the Restaurant data set

name address city cuisine
uncle nick’s 747 ninth ave. new york city greek
uncle nick’s 747 9th ave. between 50th and 51st sts. new york mediterranean

The census data set is a synthetic dataset containing 824 census-like records
with 327 duplicates, composed of two duplicate free sets with 449 and 375
records. The attributes being last name, first name, house number and street.
Table 2 shows a sample duplicate record from this data set.

Table 2. Sample duplicate records from the Census data set

last name first name house number street
JIMENCZ WILLPAMINA S 214 BANK
JIMENEZ WILHEMENIA 214 BANKS

5.2 Experimental Methodology

For the blocking phase the multi-pass algorithm as described in [31] is used with
a window distance size of 0.25. On the restaurant dataset the blocking was done
on the name and address attribute resulting in 251 potential duplicate pairs
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for the set M ′, which corresponds to 100% recall and 45% precision, and 188
non-duplicate pairs for the set U ′. On the census dataset the blocking was done
on the last name and first name attribute resulting in 1524 potential duplicate
pairs for the set M ′, which corresponds to 90% recall and 19% precision, and
1607 non-duplicate pairs for the set U ′.

For comparison of the experimental results precision, recall and F-measures.
are calculated. These are defined as usual in information retrieval [32]:

Precision =
|CorrectlyIdentifiedDuplicates|

|IdentifiedDuplicates|

Recall =
|CorrectlyIdentifiedDuplicates|

|TrueDuplicates|

F -measure =
2 ∗ Precision ∗ Recall

Precision + Recall

The precision-recall curves in the figures use interpolated precision values
at 20 standard recall levels following the traditional procedure in information
retrieval [32]. However, the figures show only the interesting area between the
recall levels 0.6 and 1.

5.3 The Fellegi-Sunter Model as Decision Model

For the evaluation of the approach using the Fellegi-Sunter model as decision
model, a threshold of 50% is used, i.e. all pairs that have a matching probability
of less than 50% are removed from M ′

t.

Dependencies. A first experiment compares the precision and recall of the Fellegi-
Sunter model under and without the independence assumption. This is done
using continuous values and in the described unsupervised way as well as a
supervised way, which calculates the m(γ[a, b]) and u(γ[a, b]) values on the true
sets M and U . Furthermore the results are also compared against a simple
baseline, which simply concatenates the string values of the individual attributes
and takes the string similarity between these concatenated strings as overall
result - ignoring attribute relevance.

The maximum F-measures of these methods on both data sets are shown in
Table 3. Figure 3 shows the precision and recall curves for the restaurant dataset,
Figure 4 the curves for the census dataset.

These results show that the Fellegi-Sunter model taking dependencies into
account always reaches one of the highest accuracies. Even under the indepen-
dence assumption it performs significantly better than the baseline. However,
the effect of taking dependencies into account depends on the dataset, which
can be explained that in the restaurant dataset, there exist less dependencies
between the attributes.
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Fig. 3. Precision-Recall for the restaurant dataset

Table 3. Maximum F-measures using the Fellegi-Sunter model as decision model

Method Restaurant Census
Baseline 0.916 0.725
unsupervised
F&S independent 0.943 0.855
F&S dependent 0.940 0.875
supervised
F&S independent 0.953 0.834
F&S dependent 0.973 0.909

Continuous Values. The previous experiment has already used the extension for
continuous distances measures. In order to show the impact of these continuous
values in contrast to thresholded boolean ”match” - ”not match” values is shown
in the following experiments. The results of the Fellegi-Sunter model with con-
tinuous values and taking dependency into account is compared to the results
using thresholded boolean values, with thresholds of 0.1, 0.2, 0.3 and 0.4. The
maximum F-measures of these methods on both data sets are shown in table 4.
Figure 5 shows the precision and recall curves for the restaurant dataset, Figure
6 the curves for the census dataset.

These results show that boolean values can reach results nearly as good as
continuous values under the condition that they are well calibrated. Poorly cal-
ibrated thresholds for the boolean values can result in very poor results, like
the results for the thresholds 0.1 or 0.4. Therefore the use of continuous distance
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Fig. 4. Precision-Recall for the census dataset

Table 4. Maximum F-measures for boolean variables

Method Restaurant Census
F&S continuous 0.940 0.875
boolean - 0.1 0.845 0.649
boolean - 0.2 0.915 0.834
boolean - 0.3 0.930 0.874
boolean - 0.4 0.902 0.803

measures for the comparison vector is not only highly accurate, but also requires
much less user-interaction than using boolean values and is therefore preferable.

5.4 Support Vector Machines as Decision Model

The next experiment uses the support vector machines in the way as described
in Section 4.5, i.e., the svm is trained with U ′ as negative examples and with
M ′ as positive examples. To this end the libsvm library was used as provided
by [33], taking c-svcs, with a radial basis kernel and setting the gamma and cost
parameter to 1. This results in maximum f-measures for the restaurant data set
of 0.949 and for the census data set of 0.908. The precision and recall curves are
shown in comparison to other approaches in the following section.

These results are very convincing, but it is interesting to note that when
changing the parameters gamma and cost the results may vary dramatically
and particularly different for the two data sets, i.e., the best parameter settings
depend on the data and the default settings that worked for both data sets may
not work for others!
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Fig. 5. Precision-Recall for boolean variables on the restaurant dataset

Fig. 6. Precision-Recall for boolean variables on the census dataset

5.5 Comparison of the Approaches

This section compares the Fellgi-Sunter based and SVM based approaches with
other state of the art methods. This is done for the unsupervised and the
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supervised setting. For the unsupervised setting the following approaches are
compared on the restaurant and the census data set:

– Base: this baseline simply concatenates the individual string values of the
attributes and takes the string similarity between these concatenated strings
as overall result - ignoring attribute relevance.

– HGM (Hierarchical Graphical Model): this is the unsupervised approach
presented in [11] that uses the same datasets for their evaluation. Their
results are simply copied for comparison, although they used a different
blocking algorithm.

– Fellegi-Sunter: The Fellegi-Sunter based approach using continuous distance
values and taking dependencies into account.

– SVM: The SVM based approach.

It must be noted that the Jaro distance is used as distance function for the
experiments as provided by [34], whereas [11] was using the SoftTFIDF distance
and [14] was using the Jaccard distance. A comparison of these distance functions
is presented in [24]. The impact of different distance functions is evaluated in
Section 5.6.

The maximum F-measures of these methods on both data sets are shown in
table 5. Figure 7 shows the precision and recall curves for the restaurant dataset,
Figure 8 the curves for the census dataset in the unsupervised setting.

These results clearly show that the proposed unsupervised methods signifi-
cantly outperform other exisiting unsupervised methods and they are even not
far away from the results of fully supervised methods.

Fig. 7. Precision-Recall for the restaurant dataset
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Fig. 8. Precision-Recall for the census dataset

Table 5. Maximum F-measures for detecting duplicates

Method Restaurant Census
Base 0.916 0.725
HGM (SoftTFIDF) 0.844 0.759
F&S unsupervised 0.940 0.875
SVM unsupervised 0.949 0.908
SVM B&M (Jaccard) 0.971 -

The higher precision of the HGM method for the census dataset at the 100%
recall level is caused by the different blocking algorithm. Ours reaches here around
90% recall, therefore the precision for the 95% and 100% recall levels are 0.

5.6 Impact of Distance Functions

The previous experiments used the Jaro distance for comparison. In order to
assess the impact of different similarity functions, the experiments using the
Fellegi-Sunter model and the SVM are also carried out with a simple Leven-
shtein distance [35] and a TFIDF (term frequency/inverse document frequency)
distance as often used in information retrieval. Additionally on the restaurant
data set a combination of the Jaro and the TFIDF similarity is tested. The
maximum F-measures can be found in Table 6 the precision-recall curves for the
restaurant data set can be found in Figure 9 and Figure 10. The curves for the
census data set are left out for space reasons.
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Table 6. Maximum F-measures using different distance measures

Method Restaurant Census
F&S levenshtein 0.914 0.851
F&S jaro 0.940 0.875
F&S tfidf 0.964 0.546
F&S tfidf+jaro 0.965
SVM levenshtein 0.735 0.489
SVM jaro 0.949 0.908
SVM tfidf 0.898 0.600
SVM tfidf+jaro 0.974

Fig. 9. Precision-Recall for the restaurant dataset using the Fellegi&Sunter model with
different similarity measures

The experiment shows that the selection of a good similarity function is of
great importance. It shows that the effectiveness of a similarity function depends
on the data, in particular the TFIDF similarity function performs much better
on the restaurant data set than on the census data. The results further show
that the SVM approach is much more sensible to a good similarity function, both
alternative similarity functions result in a much worse accuracy. The combination
of several similarity measures significantly outperforms those with just one, this
can be explained by that a single similarity function in general only detects one
kind of error, if several kinds of error might occur, like in the restaurant data
set, several similarity measures should be used together for maximum accuracy.
These results demand for further work in unsupervised finding ideal similarity
functions.



Unsupervised Duplicate Detection Using Sample Non-duplicates 161

Fig. 10. Precision-Recall for the restaurant dataset using the SVM model with different
similarity measures

Relationships. In order to evaluate the approach for taking relationships into
account, the ”cuisine” attribute of the restaurant data set can be seen as related
object, because it realizes a n : 1 relationship. The similarity of these attribute
values were also difficult to measure with string similarity measures as can be
easily seen for examples like ”greek-mediterranean” or ”asian-chinese”. There-
fore the jaro measure was replaced with the mutual information score, which is
basically the ratio between the true number of cooccurences of a value-pair to
the expected statistical random number of cooccurences.

Using this measure for the ”cuisine” attribute and the jaro measure for all
others, yields a maximum F-measure of 0.955 (vs. 0.940) for the Fellegi-Sunter
based model and 0.973 (vs. 0.949) for the SVM based model. This clearly shows
the potential of this method, although further experiments with other data sets
are required. We expect a much more significant gain in accuracy for more rele-
vant attributes/relationships in other domains.

6 Conclusion and Future Work

This paper has presented an unsupervised approach for duplicate detection, which
incorporates sample non-duplicates into the duplicate decision process. This is
used either with a refinement of the classic Fellegi-Sunter model for record linkage,
which allows determining appropriate parameter values using continuous simi-
larity measures and taking attribute dependencies into account or by using Sup-
port Vector Machines. The proposed approach is based on unsupervised learning
and domain independence, which makes it completely free from user interaction,
i.e., removing the main reason, why classical approaches are very expensive. The
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evaluations on two test datasets showed that the approach reaches very high ac-
curacy, outperforms existing unsupervised approaches and is nearly competitive
with fully supervised and domain dependent approaches.

It has been shown that the importance of the used similarity function is high,
therefore we want to further investigate in unsupervised finding ideal (combi-
nations of) similarity functions. Also the usage of association measures like the
mutual information score has been shown to be a simple but effective method to
incorporate interrelated objects into the duplicate detection process. However,
other data sets that are expected to profit more of this method need to be found
and evaluated.

Ongoing scalability experiments on large real world data sets, have shown
that the naive training of Fellegi-Sunter distributions and SVMs with the full
M ′ and U ′ sets result in quadratic behavior. The simple optimization, restricting
the size of these training sets with a fixed threshold has shown very promising
results and allows linear complexity and for this reason good scalability. Finding
an ideal threshold is still an open issue.
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Abstract. XML-based databases have become a major area of interest
in database research. Abstractly speaking they can be considered as a
resurrection of complex-value databases using constructors for records,
lists, unions plus optionality and references. XQuery has become the
standard query language for XML. As XQuery is a declarative query
language, the problem of query optimisation arises. In this paper an al-
gebraic approach to query optimisation is introduced. This is based on a
translation of XQuery into a query algebra for rational tree types. The
algebra uses simple operations on types and structural recursion for lists.
The translation exploits linguistic reflection for the type-safe expansion
of path expressions. The availability of an algebraic representation of
queries permits query rewriting, which in combination with cost heuris-
tics permits queries to be rewritten and thus optimised.

1 Introduction

Though XML is more than a database language [26], it has become a major area
of interest in database research. XML can be considered as a complex-value data
model using constructors for records, lists, unions plus optionality and references
[1,36].

Using XML for databases requires schema definition, query and update lan-
guages. By now, XML Schema [46] has become the W3C standard for defining
schemata, while XQuery [16,47] is the recommended standard for querying XML
documents. For updates only little work has been done so far, e.g. [42,22].

In fact, XML Schema supports almost directly the definition of tree types
using the mentioned constructors. XQuery combines ideas from various prede-
cessor proposals for XML query languages [4,6,12]. Most importantly, queries are
composed of a matching part that binds variables to values according to a given
XML document, and a construction part that creates new XML documents from
these variables.
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As XQuery is a declarative query language with XPath [14] as its core, the
problem of query optimisation arises. This problem is directly related to the
implementation of XQuery, for which there are two major lines of research.
The first one, e.g. [11], attempts a translation to SQL based on a reification of
XML via relational database technology. The drawback of this approach is that
semantics may be lost in the translation from trees to relations. The alternative
is to approach a direct implementation of XQuery, e.g. [28].

In this paper we take a different approach, which is closer to the correspond-
ing relational theory. Considering XML as a complex value data model, each
XML document can be represented by a rational tree, i.e. a (possibly infinite)
tree with only finitely many different subtrees. In fact, rational trees represent
possibly infinite data structures that still can be finitely represented. The semi-
nal work in [10] contains the mathematical theory of rational trees. In [3,32] it
was shown that rational trees capture indeed the gist of the structural notion
of “object” in object oriented databases. In [30] this was extended to show that
in fact each reasonable data model can be represented using rational trees. In
fact, the finite representation of a rational tree results from breaking cycles and
introducing identifiers. Conversely, a collection of objects with identifiers and
references based on these identifiers can be expanded into rational trees, pro-
vided a condition known as “value representability” is satisfied [31,32]. Value
representability and thus the representation by rational trees is also known as
a necessary and sufficient condition for the unique identification of objects and
the existence of schema-defined generic update operations [32].

Our idea is to exploit a query algebra for rational trees and to use algebraic
query rewriting in combination with query costs heuristics for query optimi-
sation. This idea requires a translation of XQuery into a rational tree query
algebra. In [30] it has been shown how the gist of query algebras can be ex-
pressed in a generic rational tree algebra. In fact, only operations defined for
the constructors of a type system plus a single generalised join-operation are
needed. In [19] this has been extended by showing that indeed all query algebras
that were developed together with object oriented databases, e.g. RELOOP [8],
ENCORE [33], AQUA [24], QAL [29], HERM-algebra [43] and GOMext [9,17],
can be expressed in a generic rational tree algebra. Though that is has not yet
been formally proven, the same presumably holds for algebras proposed for XML
such as XAlgebra [13] and TAX [15].

For short let RTA denote the query algebra for rational trees from [30]. RTA
uses operators for the type system, i.e. for the abstract system of types as de-
fined in [16]. In particular, it exploits structural recursion [25,41,44] for lists.
More generally, structural recursion was developed for all kinds of bulk types
such as lists, sets, multisets (aka bags), binary trees, etc. [5,41,44], but the pri-
mary interest was on finite sets [40,41,45]. Structural recursion was thoroughly
investigated throughout the nineties. The fundamental idea of structural recur-
sion on such bulk types is simple and powerful at the same time exploiting the
simple fact that non-empty lists can be constructed by using singleton lists and
list concatenation, so three constructors – the third one producing the empty
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list – are sufficient for the representation of lists. Consequently, operations on
lists are sufficiently determined by their effects on the empty list, singleton lists,
which can be defined by an operation on the list element, and lists that are the
concatenation of two sublists. Similarly, constructors for the empty set, singleton
sets and set union will give us all finite sets with elements of a particular type.
Koch in [23] has used a similar approach based on list comprehensions. However,
his work is placed in a complexity-theoretic setting.

As shown in [20] the translation of XQuery to RTA works best, if schema
information is available, in particular for the path expressions. This reflects the
fact that the major difficulty in implementing XQuery results from path expres-
sions [14,27], i.e. from the fragment of the language that subsumes XPath [7].
Then it is a natural idea to exploit type-safe linguistic reflection [38,37] to deal
with this problem. The basic idea of linguistic reflection consists of providing
macros in a language that will be expanded during compilation or execution. In
the case of XQuery these macros will be parts of FLWOR- and in particular path
expressions. The macro expansion requires some complex computation, during
which the information about the schema will be needed. In order to do this, the
expression at hand will be treated as a value of some type, such that a predefined
process can take this value as its input and produce another value representing
the expanded macro as its output. This output value has to be treated again as
part of the code to be compiled or executed. Linguistic reflection is as old as the
roots of functional programming, but due to the work of mainly Stemple and
Sheard [39,35,34] it has been shifted from a run-time to a compile-time approach
and in addition has been extended to guarantee type-safety. The work in [18]
contains an implementation of linguistic reflection in the context of persistent
programming languages.

Using this idea of linguistic reflection is what we do in our approach, i.e.
we present a translation from essential parts of XQuery to RTA and show how
this translation benefits from linguistic reflection. In case there is no schema
information, it must be derived from a given document, but we will not explore
this direction in this paper.

Besides algebraic query optimisation, the expected benefits of the translation
to a query algebra are the easy implementation of the operations and the inte-
gration with programming languages, e.g. using the physical architecture from
[21], and the easy extension to other constructors such as sets and multisets in
case the order that comes with the list constructor is considered unnecessary or
even undesired.

We first introduce an abstract model of XML, XQuery and RTA in Sections
2 and 3, respectively. In Section 4 we then outline the translation from XQuery
to RTA. We focus on structural recursion and show that some of the functions
used as parameters are complicated, as they refer to path finding. We show how
linguistic reflection can be used to expand these functions. In particular, the
complexity arising from the paths will be taken up by the translation. Section 5 is
then devoted to algebraic query optimisation. For this we explore cost heuristics
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for the various operators of RTA, which directly lead to query rewriting rules.
We conclude with a brief summary.

2 Abstract Model of XML and XQuery

In this section we describe some basics of XML and XQuery. Of course, as both
of these are complex languages, we cannot describe all details and therefore take
a more abstract view focusing more on the semantics than on the syntax.

2.1 XML Documents as Trees

Start with a type system that supports records, lists and unions. Using abstract
syntax this type system can be described by

t = b | (t1, . . . , tn) | [t] | t1 ⊕ · · · ⊕ tn.

Here b represents a (not further specified) collection of base types, e.g. the base
types supported by XML such as String , Integer , Double, ID , etc. For reasons
that will become clear, when we add references, we only use a single type ID for
identifiers. Furthermore, assume that one of the base types is Empty with only
one possible value. This type can be used to support optionality.

We use (t1, . . . , tn) to denote an ordered record type with component types
ti, the type [t] is used for finite lists, and t1 ⊕ · · · ⊕ tn is used for a (disjoint)
union type with components ti.

Each type t denotes a set of values called its domain dom(t). Formally, we
obtain these domains as follows:

– dom(bi) = Vi, i.e. for each base type bi we assume some set Vi of values of
that type, e.g. dom(EMPTY ) = {⊥}.

– dom((t1, . . . , tn)) = dom(t1) × · · · × dom(tn).
– dom([t]) = {[v1, . . . , vk] | k ∈ N, vi ∈ dom(t)}.
– dom(t1 ⊕ · · · ⊕ tn) = {(i, vi) | 1 ≤ i ≤ n, vi ∈ dom(ti)}.

Then an XML document can be represented by a value of some type t, which
in turn is representable as a tree, provided the document does not contain ref-
erences. In particular, we can treat attributes in the same way as subelements
– which is no loss of generality for databases, whereas for text markup it may
make a significant difference.

In order to also capture references, we extend the type system to

t = b | � | (t1, . . . , tn) | [t] | t1 ⊕ · · · ⊕ tn | � : t,

where � represents reference labels. The domains are simply dom(�)=dom(ID)
and dom(� : t) = {(i, v) | i ∈ dom(�), v ∈ dom(t)}. Following [1] each occurrence
of a value i of type ID in some complex value v that corresponds to a labelled
type � : t defines a reference, whereas each occurrence of a value i of type ID in
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v that corresponds to a label � uses the reference. In XML Schema the usage of
references corresponds to the type IDREF , whereas the definition of references
corresponds to the type ID . Furthermore, IDREFS corresponds to a list type
[�] – in fact, here we would prefer to use a set type, but for simplicity and
orthogonality of the constructors let us use only one bulk type constructor.

Example 2.1. Let us look at the following schema definition in XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="coffee-shop">

<xs:complexType>
<xs:sequence>

<xs:element ref="coffees"/>
<xs:element ref="growers"/>
<xs:element ref="regions"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="coffees">

<xs:complexType>
<xs:sequence>

<xs:element ref="coffee" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="growers">

<xs:complexType>
<xs:sequence>

<xs:element ref="grower" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="regions">

<xs:complexType>
<xs:sequence>

<xs:element ref="region" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="coffee">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="body" type="xs:string" minOccurs="0"/>
<xs:element ref="blend" maxOccurs="unbounded"/>
<xs:element name="price" type="xs:decimal"/>

</xs:sequence>
<xs:attribute name="c-id" type="xs:ID" use="required"/>
<xs:attribute name="producer" type="xs:IDREF" use="required"/>

</xs:complexType>
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</xs:element>
<xs:element name="blend">

<xs:complexType>
<xs:sequence>

<xs:element name="bean" type="xs:string"/>
<xs:element name="percentage" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="grower">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="owner" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="area" type="xs:string" minOccurs="0"/>
<xs:element name="established" type="xs:date" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="g-id" type="xs:ID" use="required"/>
<xs:attribute name="in-region" type="xs:IDREF" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="region">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
</xs:sequence>
<xs:attribute name="r-id" type="xs:ID" use="required"/>
<xs:attribute name="famous-coffees" type="xs:IDREFS"
use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

That is, a coffee-shop contains a list of coffees, growers and regions. A coffee
is described by a name, a body (optional) and a blend, which is a sequence of
beans together with their percentages. A grower is described by a name, a list of
owners, an area (optional) and an establishment date (optional). A region just
has a name. Furthermore, there are references from a coffee to the grower that
produces it, from a grower to the region it is located in, and from a region to all
its famous coffees.

Using our type system, we obtain the following complex type definitions for
representing this schema:

coffee-shop = (coffees, growers, regions)
coffees = [c-id : coffee]
growers = [g-id : grower]
regions = [r-id : region]
coffee = (c-name, body ⊕ Empty, [blend], price, producer)
c-name = String
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body = String
price = Decimal
producer = g-id
blend = (bean, percentage)
bean = String
percentage = Integer
grower = (g-name, [owner], area ⊕ Empty, established ⊕ Empty, in-
region)
g-name = String
owner = String
area = String
established = Date
in-region = r-id
region = (r-name, famous-coffees)
r-name = String
famous-coffees = [c-id]

Here c-id, g-id and r-id are labels.

Example 2.2. Consider the following XML document that is in accordance with
the schema defined in Example 2.1:

<coffee-shop
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="coffee.xsd">
<coffees>

<coffee c-id="o11" producer="o1">
<name>Java</name>
<body>full</body>
<blend>

<bean>Arabica</bean>
<percentage>100</percentage>

</blend>
<price>31.95</price>

</coffee>
<coffee c-id="o12" producer="o1">
<name>Sumatra</name>
<body>very full</body>
<blend>

<bean>Robusta</bean>
<percentage>100</percentage>

</blend>
<price>34.95</price>

</coffee>
<coffee c-id="o13" producer="o1">
<name>New Guinea</name>
<blend>

<bean>Arabica Old</bean>
<percentage>65</percentage>
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</blend>
<blend>

<bean>Robusta Old</bean>
<percentage>35</percentage>

</blend>
<price>29.95</price>

</coffee>
</coffees>
<growers>

<grower g-id="o1" in-region="o2">
<name>Fine Blend</name>
<owner>Mr Bean</owner>
<owner>Mrs Bean</owner>
<area>231 ha</area>
<established>1987-01-01</established>

</grower>
</growers>
<regions>

<region r-id="o2" famous-coffees="o11 o12">
<name>Asia</name>

</region>
</regions>

</coffee-shop>

This XML document can be represented by the following complex value:

( [ (&o11, (Java, (1, full), [(Arabica, 100)], 31.95, &o1)),
(&o12, (Sumatra, (1, very full), [(Robusta, 100)], 34.95, &o1)),
(&o13, (New Guinea, (2, ⊥),

[(Arabica Old, 65), (Robusta Old, 35)], 29.95, &o1))],
[ (&o1, (Fine Blend, [Mr Bean, Mrs Bean],

(1, 231 ha), (1, 1987-01-01), &o2))],
[ (&o2, (Asia, [&o11, &o12]))])

2.2 XQuery in a Nutshell

XQuery is a query language allowing to extract sequences of subtrees and base
type values from any number of XML document trees, and to combine them to
construct a sequence of trees and basic values (the so-called items) forming the
result of the query. In practice, most often the result of the query is a sequence
consisting of a single tree.

In XQuery, the XML documents serving as input are identified by using the
so-called input functions, of which the most commonly used one is doc, which ac-
cepts a URL corresponding to the location of an XML document as a parameter.
For example, doc("coffee-shop.xml") would retrieve the coffee-shop.xml
document from the current directory.
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Sequences of subtrees are retrieved by using the so-called path expressions,
consisting of one or more steps separated by a slash, /, or double slash, //. Each
step acts on the sequence of items created by the previous step to form a further
sequence, which either forms the output of the path expression (if the step is
the last one), or serves as input for further steps. The following query, formed
by combining an input function with a path expression, will result in a sequence
of name elements representing coffee names (assuming coffee-shop.xml is the
XML document introduced in the previous section): doc("coffee-shop.xml")/
coffee-shop/coffees/coffee/name.

doc("coffee-shop.xml")/coffee-shop results in a sequence consisting of a
single coffee-shop element, doc("coffee-shop.xml")/coffee-shop/coffees
results in a sequence consisting of a single coffees element (a sub-element of the
coffee-shop element obtained in the previous step), doc("coffee-shop.xml")/
coffee-shop/coffees/coffee will result in a sequence of all coffee elements
from coffees and so on. Filtering can be applied to restrict which of the items are
to be included in a given step. While / retrieves child items (branches immediately
connected to the root), // forms a sequence consisting of all matching subtrees,
at all depths. / and // are illustrated in examples 2.3 and 2.4, respectively.

As XQuery is a functional language, an XQuery program can be regarded as an
expression formed by subexpressions which, at execution time, are evaluated in
the order of precedence. The most commonly used type of expressions in XQuery
are the so-called FLWOR (for, let, where, order by, return) expressions. In
a FLWOR expression, a for clause binds each item of a sequence to a variable,
and evaluates the rest of the expression with that binding, resulting in as many
evaluations as there are items in the sequence. The for clause is illustrated in
Example 2.4 below.

A let clause binds the whole sequence to a variable, and evaluates the rest
of the expression just once, with that binding. The let clause is illustrated in
Examples 2.5, 2.6, and 2.7.

The where clause serves as a filter: the rest of the FLWOR expression is exe-
cuted only if the boolean expression associated with the where clause evaluates
to true. This is illustrated in Example 2.5, 2.6, and 2.7.

The order by clause is used for sorting (we do not discuss it here any further).
Finally, the return clause is a constructor, instantiating an item that is to

be included as the result of the query. By using return, items retrieved from
different parts of the same document, or from different documents, can be com-
bined together, resulting in sophisticated joins. As shown in Example 2.7, the
constructor formed by using the return clause can include subqueries, whose
output is incorporated into the sequence created by the constructor.

XML Query can make use of type information from XML Schema documents
associated with XML documents inputted by the query by explicitly specifying
the type of items to be included in sequences or to be constructed. In addition,
parsers are able to analyse and to reject a query based on schema information
only, if the query is found to construct items that do not match the declared
types for constructor output.
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Example 2.3. Assume the document in Example 2.2 is stored in coffee-shop.xml.
Then

<coffees>
{

doc("coffee-shop.xml")/coffee-shop/coffees/coffee/name
}

</coffees>

is a simple query that will select the names of coffees. For our example document
the result would be

<coffees>
<name>Java</name>
<name>Sumatra</name>
<name>New Guinea</name>

</coffees>

Example 2.4. The query

<coffee-makers>
{

for $N in doc("coffee-shop.xml")//owner
return <name>{ $N/text() }</name>

}
</coffee-makers>

returns the names of coffee owners.

Example 2.5. The following is a query with a more interesting where-clause,
which returns the names of Arabica coffees:

<Arabicas>
{

for $W in doc("coffee-shop.xml")/coffee-shop/coffees/coffee
let $N := $W/name, $B := $W/blend
where $B/bean/text() = "Arabica" and $B/percentage/text() = 100
return <name>{ $N/text() }</name>

}
</Arabicas>

Example 2.6. The following query, which contains selection conditions on the
paths, will produce a list of coffees with their producers:

<coffees>
{

let $db := doc("coffee-shop.xml")
for $W in $db//coffee, $V in $db//grower
let $P := $W/@producer, $N := $W/name, $M := $V/name,

$I := $V/@g-id
where $I = $P
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return
<coffee>

<product>{ $N/text() }</product>
<producer>{ $M/text() }</producer>

</coffee>
}

</coffees>

Example 2.7. The following is an example of a nested query:

<coffees>
{

let $db := doc("coffee-shop.xml")
for $N in $db//coffee/name
return
<coffee>

{ $N }
{
for $W in $db//coffee
where $W/name = $N
return $W/body

}
</coffee>

}
</coffees>

The query lists the names of all coffees, adding to each name the corresponding
body, when such information is available.

3 RTA: A Rational Tree Query Algebra

Following a basic idea in [30] we use a query algebra with operations “induced”
from the type system plus a join-operation. For our purposes here it is more
convenient to consider products instead of joins.

In doing so, let 1l denote a trivial type with only one value in its domain. We
use a unique “forget”-operation triv : t → 1l for each type t. Assume further a
boolean type BOOL with constant values T and F. Thus, we may consider the
operations ∧ : BOOL × BOOL → BOOL (conjunction), ¬ : BOOL → BOOL
(negation) and ⇒: BOOL × BOOL → BOOL (implication).

We also use a polymorphic equality function eq : t × t → BOOL for any type
t. Obviously, eq(x, y) = T iff x = y holds.

For record types we consider projection πi : (t1, . . . , tn) → ti and product
o1 × · · · × on : t → (t1, . . . , tn) for given operations oi : t → ti. Obviously, we
have πi(x1, . . . , xn) = xi and (o1 × · · · × on)(x) = (o1(x), . . . , on(x)). As usual,
we write πi1,...,ik

as a shortcut for πi1 × · · · × πik
.

For union types we use the canonical embeddings ιi : ti → t1 ⊕ · · · ⊕ tn
with ιi(x) = (i, x). Other operations on union types take the form o1 + · · ·+ on :
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t1 ⊕· · ·⊕ tn → t for given operations oi : ti → t, so we have (o1 + · · ·+on)(i, x) =
oi(x).

For list types we may consider � (concatenation), the constant empty : 1l → [t]
and the singleton operation single : t → [t] with well known semantics.

It should be noted here that document order is preserved through the use of
lists. The ordering of the elements in the lists conforms to the ordering of the
elements in the queried XML document (or conforms to specific re-ordering in
the query itself) throughout the execution process.

3.1 Structural Recursion

In addition, we consider structural recursion src[e, g,�] : [t] → t′ with a value
e of type t′, an operation g : t → t′ and an operation � : (t′, t′) → t′, which is
defined as follows:

src[e, g,�]([]) = e

src[e, g,�]([x]) = g(x)
src[e, g,�](X�Y ) = src[e, g,�](X) � src[e, g,�](Y )

In order to be well-defined � must be associative with e as neutral element,
i.e. (x � y) � z = x � (y � z) and x � e = e � x = x hold for all x, y, z ∈ dom(t′).

Let us illustrate structural recursion by some more or less standard examples.
First assume that t is a “number type”, on which addition + : t × t → t is
defined. Then src[0, id, +] with the identity function id on t defines the sum of
the elements in a set. In this way all the known aggregate functions of SQL and
more can be defined by structural recursion.

Now consider an operation f : t → t′. We want to raise f to an operation
map(f) : [t] → [t′] by applying f to each element of a list. Obviously, we have
map(f) = src[[], single ◦ f, �].

Next consider an operation ϕ : t → BOOL, i.e. a predicate. We want to define
an operation filter(ϕ) : [t] → [t], which maps a given list to the sublist of all
elements satisfying the predicate ϕ. For this we may write filter(ϕ) =

src[[], if else ◦ (ϕ × single× (empty ◦ triv)), �]

with the operation if else : (BOOL, t, t) → t with (T, x, y) �→ x and
(F, x, y) �→ y.

As a third example assume that t is a type, on which addition + : (t, t) → t
is defined. Then src[0, id, +] with the identity id on t defines the sum of the
elements in a list.

3.2 Querying XML with RTA

Let us simply illustrate now how RTA can be applied to query XML. We will
use the queries from the previous section and write equivalent queries in RTA.



Towards Algebraic Query Optimisation for XQuery 177

Example 3.1. Let us consider first the query in Example 2.3. In this case we
basically have to analyse a path expression. For this assume that vin is the com-
plex value in Example 2.2, i.e. it represents the corresponding XML document
coffee-shop.xml.

The construct doc(coffee-shop.xml)/coffee-shop creates a list with the whole
document as its only entry, which corresponds to applying the RTA-operation
single to vin. Then /coffees selects the first successor of the root. As vin is a
triple, this corresponds to applying map(π1) to [vin]. This gives

map(π1)([vin]) = src[[], single ◦ π1,
�]([vin])

= single ◦ π1(vin)
= [π1(vin)]

The effect of /coffee in the XQuery path expression is to produce only the list
of coffees, i.e. π1(vin). This can be achieved by another application of structural
recursion, in this case src[[], id, �]. This gives

src[[], id, �]([π1(vin)]) = π1(vin)

as desired. Finally, the effect of /name in the XQuery path expression is first
to throw away the identifiers for coffees, which can be achieved by applying
π2, then taking the first component, i.e. to apply π1. Thus, the last step is the
application of map(π1 ◦ π2).

In summary, the query in Example 2.3 corresponds to the query

map(π1 ◦ π2) ◦ src[[], id, �] ◦ map(π1) ◦ single.

Applied to vin we obtain the list value [Java, Sumatra, New Guinea] as desired.

Example 3.1 already gives valuable hints, how a translation of XQuery into RTA
might work. Basically, we follow the execution model for XQuery, which works
on lists and applies operations to the elements of the list. So, basically each step
corresponds to some structural recursion operation.

Example 3.1 also indicates the expected advantage from the translation into
RTA, as we were able to simplify the algebraic query. This is a first step towards
query “optimisation”.

However, in Example 3.1 we used only explicit path expressions. The next
example handles a query, in which we have to search for the path. We will see that
this constitutes a much more complicated application of structural recursion.

Example 3.2. Let us now consider the query in Example 2.4. As in the pre-
vious example we first have to apply single to vin to achieve the same effect
as doc(coffee-shop.xml) in the XQuery path expression. However, the follow-on
RTA-operation has to capture the effect of //owner, which can be done by struc-
tural recursion. That is, we apply src[[], h, �] to [vin] with an operation h that
searches for successors with the name owner.

The application of this operation h to some x can be defined recursively as
follows:
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if type(x) = owner
then [x]
else
if type(x) = (t1, . . . , tn)
then h(π1(x))� . . . �h(πn(x))
else
if type(x) = [t]
then src[[], h, �](x)
else
if type(x) = t1 ⊕ · · · ⊕ tn
then h(π2(x))
else []
endif

endif
endif

endif

Finally, we can neglect the return-clause, as it is just a renaming of tags, which
do not appear in our anonymised complex values.

In summary, the corresponding RTA-query is src[[], h, �] ◦ single with

h = if then ◦ (ϕ1 × single× h1)
h1 = if then ◦ (ϕ2 × (� ◦ (h ◦ π1 × � ◦ (. . . (h ◦ πn−1 × h ◦ πn) . . . ))) × h2)
h2 = if then ◦ (ϕ3 × src[[], h, �] × h3)
h3 = if then ◦ (ϕ4 × h ◦ π2 × empty)

and the obvious Boolean operations

ϕ1(x) ≡ type(x) = owner
ϕ2(x) ≡ type(x) = (t1, . . . , tn)
ϕ3(x) ≡ type(x) = [t]
ϕ4(x) ≡ type(x) = t1 ⊕ · · · ⊕ tn

Example 3.2 shows that some of the operations used within RTA-queries require
complex definitions. It is not difficult to see that the other examples of queries
from the previous section require analogous techniques. We will present a general
solution for the translation in Section 4.

3.3 Multi-dimensional Extension

Let us finally mention a “multi-dimensional” extension of structural recursion,
but let us restrict for simplicity to the binary case. That is, we define an operation
src2[f, g, h] : ([t1], [t2]) → t with parameters f : [t2] → t, g : (t1, [t2]) → t, and
h : (t, t) → t. Similarly to the “one-dimensional” case we define
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src2[f, g, h]([], L2) = f(L2)
src2[f, g, h]([x], L2) = g(x, L2)

src2[f, g, h](X�Y, L2) = h(src2[f, g, h](X, L2), src2[f, g, h](Y, L2))

This can be used to define the product of lists (both of type [t]) as

L1 × L2 = src2[[], g, �](L1, L2),

where [] is treated as a constant function, and g is defined by

g(x, L2) = src[[], single ◦ (x × id), �](L2).

4 Linguistic Reflection in Translating XQuery to RTA

Our goal is to translate XQuery into RTA. For this recall that XQuery is basically
a functional language, so each query corresponds to a sequence of function calls.
For instance, for the simple query in Example 2.3 we would first evaluate 〈coffees〉
by simply printing it, then evaluate the expression { doc(coffee-shop.xml)/. . . },
finally evaluate 〈/coffees〉, which again amounts only to a simple print. Therefore,
we concentrate on expressions of the form { . . . } with the dots standing for a
FLWOR-expression.

4.1 The Basic Translation Model

XQuery works on lists, and each part of a query corresponds to some function
that is executed on all elements of the list. As we assume to be given a FLWOR-
expression, we first look at the for-construct. In its simple form it has the form

for $X in 〈path-expression〉,
so we have to evaluate the path expression first:

– If doc(xxx.xml) appears in the path expression, then xxx.xml is some in-
put document, which is represented by some complex value, say vin. As we
have already seen in Examples 3.1 and 3.2, the input-function doc simply
corresponds to the RTA-operation single.

– If p/name appears in the path expression, we first translate p, say the result
is trans(p). Then /name gives rise to an application of structural recursion,
say src[[], g/name,

�]. Thus, the translation of p/name is

trans(p/name) = src[[], g/name,
�](trans(p)).

The difficult part is then to determine the operation g/name. Note that all
applications of structural recursion in Example 3.1 refer to this step.

– If p//name appears in the path expression, we proceed analogously. That is,
//name gives rise to an application of structural recursion src[[], g//name,

�],
and the translation of p//name is

trans(p//name) = src[[], g//name,
�](trans(p)).



180 M. Kirchberg et al.

Note that the structural recursion in Example 3.2 refers to this step. It also
indicates how to define g = g//name in general:

g = if then ◦ (ϕ1 × single× h1)
h1 = if then ◦ (ϕ2 × (� ◦ (g ◦ π1 × � ◦ (. . .

(g ◦ πn−1 × g ◦ πn) . . . ))) × h2)
h2 = if then ◦ (ϕ3 × src[[], g, �] × h3)
h3 = if then ◦ (ϕ4 × g ◦ π2 × empty)

with the Boolean operations

ϕ1(x) ≡ type(x) = name
ϕ2(x) ≡ type(x) = (t1, . . . , tn)
ϕ3(x) ≡ type(x) = [t]
ϕ4(x) ≡ type(x) = t1 ⊕ · · · ⊕ tn

The crucial remaining part is to take care of the Boolean operations, as these
require type-checks.

– If p[test] appears in the path expression, we first translate p. Furthermore,
test will be translated into a Boolean condition ψ, and we can combine both
using structural recursion, in this case a filter-operation, i.e.

trans(p[test]) = filter(ψ)(trans(p)).

If there is more than one condition in the for-clause, say

for $X1 in 〈path-expression1〉 ,. . . , $Xn in 〈path-expressionn〉,
each path expression will be translated separately resulting in RTA-operations
o1, . . . , on, each producing some list, say Li. Then we have to combine these lists
into one list containing all tuple combinations, i.e. we obtain L1 × · · · × Ln.

The following let-clause simply binds further variables depending on the list
resulting from evaluating the for-clause. As this may again require evaluating
a path expression, we proceed analogously to translating the for-clause.

Example 4.1. Look at the query in Example 2.5. Analogous to Example 3.1 the
for-clause will be translated to the operation

src[[], id, �] ◦ map(π1) ◦ single,

which will be applied to vin. Now the first part of the let-clause corresponds to
map(π1 ◦ π2) as already seen in Example 3.1. Similarly, the second part of the
let-clause corresponds to map(first ◦ π3 ◦ π2) with an operation first that
selects the first element of a list.

However, we do not want to replace the $W -values by the $N -values or the
$B-values, but keep all three, so the let-clause defines the operation

map(id × (π1 ◦ π2) × (first ◦ π3 ◦ π2)).
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The remaining clauses in FLWOR expressions are easy to handle. A where-
clause defines a filter-operation. The greatest difficulty is to determine the
Boolean operation, which may again involve the translation of a path expres-
sion. An order-clause corresponds to applying a sorting-operation, which can
be expressed by structural recursion. Finally, the return-clause only constructs
a value, so the only difficulty that may occur is that this construction involves
evaluating another query.

Example 4.2. Let us continue our previous example, as Example 2.5 contains a
where-clause. The list resulting from the application of the operation in Exam-
ple 4.1, which represents the combination of the for- and let-clause, contains
triples, where the first component corresponds to a coffee, the second one to its
name and the third one to the first-listed component of its blend. Thus, apply-
ing π1 ◦ π3 to such a triple gives the requested name of the first bean, while the
application of π2 ◦ π3 results in the corresponding percentage.

Thus, the first condition in the where-clause corresponds to the Boolean oper-
ation eq◦((π1◦π3)×Arabica), in which Arabica is treated as a constant operation.
Similarly, the second condition gives the Boolean operation eq◦((π2 ◦π3)×100),
and thus, the whole where-clause corresponds to the RTA-operation filter(ϕ),
where ϕ is defined by the Boolean operation

∧ ◦ ((eq ◦ ((π1 ◦ π3) × Arabica)) × (eq ◦ ((π2 ◦ π3) × 100))).

Finally, let us complete the translation of the query in Example 2.5. Taking
all the parts together, we obtain the RTA-operation

map(π2) ◦ filter(ϕ) ◦ map((id × π1 × (first ◦ π3)) ◦ π2)◦
src[[], id, �] ◦ map(π1) ◦ single

4.2 Type-Safe Linguistic Reflection

In the previous subsection we have seen that the translation of XQuery can be
done by parsing through FLWOR expressions and translating them step-by-step
into RTA-operations, most of which happen to be special cases of structural
recursion. More than this, all applications of structural recursion have the form
src[[], g, �] and the real difficulty is to determine the functions g. For this we
identify two cases:

– We obtain a highly recursive operation g that searches through the whole
document. Example 3.2 is a prototype for this case.

– We obtain an operation that is determined by the schema. Example 3.1 is a
prototype for this case.

As the chances for query optimisation are much higher in the second case
– as already seen in Example 3.1 – it will be advantageous to apply this case,
wherever it is possible. However, this means to explore the schema. As shown in
[37] a type-safe way of doing this is to apply linguistic reflection.
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Linguistic reflection is the ability of a system to observe and manipulate its
own components. This is done by extending the system with extra modules which
are created, compiled and linked in by the system itself, either during execution
or at compile-time. The language in which the system has been written would,
of course, need to provide the ability for the system to behave in this manner.

The general idea is to consider constructs in a query that are used for defining
an operation, such as /name for g/name in the previous subsection, as macros
that have to be expanded. In the case of XQuery these macros will be parts of
FLWOR- and in particular path expressions. The macro expansion requires some
complex computation, during which the information about the schema will be
needed. This can be done by ignoring that they represent query code, thus drop
this meaning, and treat them as values of some type. The expansion function
will then take this value plus the schema, which is represented as a value of some
other type, and create a new value. This new value will finally be raised back to
an executable operation. This is illustrated by Figure 1.

value of
reflection type

value of
reflection type

XQuery
code

RTA
code

�

�

�

�

drop raise

trans

expand

Fig. 1. Linguistic Reflection

Therefore, we will define reflection types in the next subsection, and finally
illustrate, how the expansion procedure for paths works.

4.3 Reflection Types

In order to represent XSchema schemata we need at least reflection types for
types, elements, attributes, and schemata. So we get the reflection type typerep
= Xtyperep ⊕ RTtyperep indicating that we are using types within XSchema and
the rational tree types. For the types that are used to describe XSchema types
we then get the following definitions:

Xtyperep = xs complex typerep ⊕ xs simple typerep
xs simple typerep = String
xs complex typerep = xs sequencerep ⊕ xs choicerep
xs sequencerep = [(namerep ⊕ xs elementrep, min, max ⊕ Empty)]
xs choicerep = [(namerep ⊕ xs elementrep, min, max ⊕ Empty)]
min = Integer
max = Integer
namerep = String
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xs elementrep = (namerep, Xtyperep, [xs attributerep])
xs attributerep = (namerep, xs simple typerep, userep)
userep = String
XSchemarep = (namespacerep, namerep, [xs elementrep])
namespacerep = String

Example 4.3. The value (1, (1, (1, [((1, “coffees”), 1, (1, 1)), ((1, “growers”), 1,
(1, 1)), ((1, “regions”), 1, (1, 1))]))) of type typerep represents the complex type
used for the element “coffee-shop” in Example 2.1. As typerep is a union type,
the leading 1 indicates that we deal with a value of type Xtyperep. Similarly, the
next one indicates a complex type, i.e. a value of type xs complex typerep, etc.
Thus, the leading 1s indicate that it is a value of an XSchema type, a complex
type, and a sequence type, respectively. For the sequence type representation
we obtain a list of the representations for the elements. The first of these is
((1, “coffees”), 1, (1, 1)), in which the first component states that we have just
a name, i.e. “coffees”. The following 1 is the default min-value, and the third
component contains the default max-value 1.

Analogously, the value (1, (1, (1, [((1, “region”), 0, (2, ⊥))]))) represents the
complex type for the element “regions” in Example 2.1. The schema in Example
2.1 is represented by the value

(“http://www.w3.org/2001/XMLSchema”, “coffee-shop”, [(“coffee-shop”,
(1, (1, (1, [((1, “coffees”), 1, (1, 1)), ((1, “growers”), 1, (1, 1)),
((1, “regions”), 1, (1, 1))]))), []), . . . ])

of type XSchemarep. Here the dots stand for representations of all the elements
used in the schema.

The value (“coffee”, (1, (1, [ ((2, (“name”, (2, “String”), [])), 1, (1, 1)), ((2,
(“body”, (2, “String”), [])), 0, (1, 1)), ((1, “blend”), 1, (2, ⊥)), ((2, (“price”,
(2, “Decimal”), [])), 1, (1, 1)) ])), [ (“c-id”, “ID”, “required”), (“producer”,
“IDREF”, “required”) ]) of type xs elementrep represents the element speci-
fication for “coffee” in Example 2.1. It would of course be part of the value
representing the schema.

Analogously, for the types used with RTA we obtain the following reflection
types:

RTtyperep = (namerep, type exprep)
type exprep = base typerep ⊕ labelrep ⊕ record typerep ⊕ list typerep

⊕ union typerep ⊕ labelled typerep ⊕ namerep
base typerep = String
labelrep = String
record typerep = [type exprep]
list typerep = type exprep
union typerep = [type exprep]
labelled typerep = (labelrep, type exprep)
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Example 4.4. The type grower from Example 2.1 will be represented by the
value

(“grower”, (3, [(7, “g-name”), (4, (7, “owner”)), (5, [(7, “area”), (1, “Empty”)]),
(5, [(7, “established”), (1, “Empty”)]), (7, “in-region”)]))

of type RTtyperep. Analogous to Example 4.3 it indicates that the name of
the type is “grower”, and that it has the structure of a record type, which
is indicated by the number 3, as record typerep is the third component of the
union type type exprep. Then the following list represents the components of
this record type. The first of these is represented by the value (7, “g-name”), so
the 7 indicates that we simply use the name of a type. The second component is
represented by (4, (7, “owner”)), so due to the 4 we know that it is a list type,
the component type of which is again simply given by a name “owner”.

Similarly, the type in-region is represented by (“in-region”, (2, “r-id”)), and
the type growers is represented by the value (“growers”, (4, (6, (“c-id”, (7, “cof-
fee”))))).

Finally, we also need representation types for the RTA-operations. For this, the
following is sufficient:

Operationrep = base oprep ⊕ projectionrep ⊕ productrep
⊕ embeddingrep ⊕ sumrep ⊕ srcrep ⊕ compositionrep

base oprep = String
projectionrep = Integer
productrep = [Operationrep]
embeddingrep = Integer
sumrep = [Operationrep]
srcrep = Operationrep × Operationrep × Operationrep
compositionrep = [Operationrep]

Example 4.5. The values (1, “single”) and (1, “concat”) represent the operations
single and concatenation � on lists, respectively. The value (6, ((1, “empty”),
(2, 3), (1, “concat”))) represents the operation src[[], π3,

�]. The value (7, [(2,
2), (2, 1), (1, “single”)]) represents the operation π2 ◦ π1 ◦ single.

4.4 The Expansion Procedure for Paths

Let us now look at the problem of expanding paths, as this turned out to be
the core of the translation problem. We have seen above that /name gives rise
to a structural recursion operation src[[], g/name,

�], so we have to determine a
representation of g/name. In order to do so, we first determine the RT type that
corresponds to an element in the schema using an operation

expand elt type : (String, XSchemarep) → RTtyperep,

i.e. we associate with an element name and a representation of a schema a ratio-
nal tree type. This can be achieved by parsing through the schema representation
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and then applying the rules for type transformation that we used in Section 2.
In particular, we blur the differences between subelements and attributes, and
we replace references by occurrences of the base type ID :

expand elt type(n, S) = expand elt type′(n, search(n, π3(S)), S)

search(n, S) =
if π1(first(S)) = n
then (π2 × π3)(first(S))
else search(n, rest(S))
endif

expand elt type′(n, (e, L), S) =
case π1(π2(e)) = 2
then (n, (1, π2(π2(e))))

case π1(π2(π2(e))) = 1
then (n, (3, check ID(parse seq(π2(π2(π2(e)))�L, S))))

case π1(π2(π2(e))) = 2
then (n, (5, check ID(parse seq(π2(π2(π2(e)))�L, S))))

endcase

parse seq(L, S) =
if L = []
then []
elsif first(L) = ((1, n′), m, M)
then if m = 1 ∧ M = (1, 1)

then [π2(expand elt type(n′, S))]�parse seq(rest(L), S)
elsif m = 0 ∧ M = (1, 1)
then [(5, [π2(expand elt type(n′, S)), (1, “Empty”)])]�

parse seq(rest(L), S)
else [(4, π2(expand elt type(n′, S)))]�parse seq(rest(L), S)
endif

elsif first(L) = ((2, e), m, M)
then if m = 1 ∧ M = (1, 1)

then [π2(expand elt type′(π1(e), (π2(e), π3(e)), S))]�

parse seq(rest(L), S)
elsif m = 0 ∧ M = (1, 1)
then [(5, [π2(expand elt type′(π1(e), (π2(e), π3(e)), S)),

(1, “Empty”)])]�parse seq(rest(L), S)
else [(4, π2(expand elt type′(π1(e), (π2(e), π3(e)), S)))]�

parse seq(rest(L), S)
endif

elsif first(L) = (n′, t, u)
then if t 
= “IDREFS”

then [(1, t)]�parse seq(rest(L), S)
else [(4, (1, “ID”))]�parse seq(rest(L), S)
endif

endif
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check ID(L) =
if L = []
then []
elsif π1(first(L)) = 1 ∧ π2(first(L)) = “ID”
then (3, [first(L), (3, rest(L))])
elsif first(check ID(rest(L))) = (1, “ID”)
then (3, [(1, “ID”), (3, [first(L)]�π2(first(rest(check ID(rest(L))))))])
else L
endif

Example 4.6. If S represents the schema from Example 2.1, we obtain

expand elt type(“coffee”, S) =
(“coffee”, (3, [(1, “ID”), (3, [(1, “String”),

(5, [(1, “String”), (1, “Empty”)]),
(4, (3, [(1, “String”), (1, “Integer”)])),
(1, “Decimal”), (1, “ID”)])]))

and expand elt type(“name”, S) = (“c-name”, (1, “String”)) assuming in the
latter case that we add some renaming to avoid name-conflicts.

Now that we got the transformation of types, we can define the expansion of
paths, i.e. we get an operation

expand elt : (String, XSchemarep) → Operationrep

such that expand elt(n, S) will be a representation of the operation g/n. In
order to define the expansion we need both the types for the element n and its
parent, and the position at which the type of n appears inside the type of its
parent. We then parse through the parent type and determine the operation g/n

according to the given position:

expand elt(n, s) =
parse type(π2(expand elt type(n, S)), π2(first(parents(n, π3(S)))),

π2(expand elt type(π1(first(parents(n, π3(S)))), S)))

parents(n, L) =
if L = []
then []
else list match(n, π1(first(L)), π2(π2(π2(first(L)))), 1)�

parents(n, rest(L))
endif

list match(n, n′, L, i) =
if L = []
then []
else match(n, n′, π1(first(L)), i)�list match(n, n′, rest(L), i + 1)
endif
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match(n, n′, e, i) =
if π1(e) = 1 ∧ π2(e) = n
then [(n′, i)]
elsif π1(e) = 2 ∧ π1(π2(e)) = n
then [(n′, i)]
else []
endif

parse type(t, i, t′) =
if π1(t′) = 3 ∧ first(π2(t′)) = (1, “ID”)
then (7, [parse type(t, i, first(rest(π2(t′)))), (2, 2)])
else case t = t′

then (1, “id”)
case π1(t′) = 3
then (2, i)

case π1(t′) = 4
then (1, “id”)

case π1(t′) = 5
then (7, [(1, “if else”), (3, [(7, [(1, “eq”), (3, [(2, 1), (1, i)])]),

(1, “single”), (7, [(1, “empty”), (1, “triv”)])])])
endcase

endif

Example 4.7. For the S in Example 2.1 we obtain expand elt(“coffee”, S) = (1,
“id”), and expand elt(“name”, S) = (7, [(2, 1), (2, 2)]).

Similarly, we get an operation expand att such that expand att(n, S) will be a
representation of the operation g/@n. We omit the details.

Finally, let us look at the expansion of paths containing some //name. In this
case we get an operation

expand elt∗ : (String , XSchemarep) → Operationrep

such that expand elt∗(n, S) will be a representation of the operation g//n. We
already saw the general structure of this operation, when we discussed the basic
model of the translation into RTA, so let us now concentrate on the Boolean
operations only. The only condition that involves the element name n is ϕ1. So,
let

expand bool1 : (String, XSchemarep) → Operationrep

be such that expand bool1(n, S) will be a representation of the operation ϕ1
associated with n. Thus, we get:

expand bool1(n, S) = (7, [(1, “eq”), (3, [(1, “type”),
(7, [(1, expand elt type(n, S)), (1, “triv”)])])])

The other operations can be obtained analogously.
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5 Algebraic Query Optimisation

While the translation to a query algebra that we described in the previous sec-
tion has its merits in its own right with respect to type-safe implementation as
discussed in [20], let us now address the presumably largest advantage of this
approach exploiting it for (heuristic) algebraic query optimisation. For this we
consider again the basic translation model for FLWOR-expressions, which result
in a sequence of structural recursion operations.

5.1 The For-Clauses

Let us start looking at a single for-clause, which gives rise to a sequence

fn ◦ · · · ◦ f1 ◦ single(vin),

in which each fi has the form src[[], gi,
�]. Furthermore, each gi has a signa-

ture gi : ti → [ti+1], i.e. the application of gi results in a list.
We investigate fi+1 ◦ fi looking first at the possible cases for gi. As the appli-

cation of gi results in a list, we must have one of the following three cases:

1. In case gi = single ◦ hi holds, i.e. fi = map(hi), we obtain fi+1 ◦ fi =
src[[], gi+1 ◦hi,

�]. As it is presumably more efficient both in terms of query
processing time and storage needed for the intermediate result to execute just
one structural recursion operation instead of two, we can use this equation
as an optimisation rule:

Rule 1. Replace src[[], g, �] ◦ map(h) by src[[], g ◦ h, �].

2. In case gi = empty ◦ triv holds, fi+1 ◦ fi degenerates to a trivial function
empty ◦ triv, i.e. the result is always the empty list. This gives rise to a
second optimisation rule:

Rule 2. Replace src[[], g, �] ◦ src[[], empty ◦ triv, �] by empty ◦ triv.

3. In case gi is itself defined by structural recursion, say gi = src[e, ki, �] ◦ hi,
nothing can be derived in particular, unless ki is a trivial constant e ◦ triv,
in which case we obtain gi = e◦triv, which gives another optimisation rule:

Rule 3. Replace src[[], src[e, e ◦ triv, �] ◦ h, �] by src[[], e ◦ triv, �].

Example 5.1. Let us look at the sequence of structural recursion from Example
3.1 which results from the translation of the for-clause in Example 2.3. Applying
rule 1 we can rewrite the query as follows:

src[[], single ◦ π1 ◦ π2,
�] ◦ src[[], id, �] ◦ src[[], single ◦ π1,

�] ◦ single
= src[[], single ◦ π1 ◦ π2,

�] ◦ src[[], π1,
�] ◦ single

= src[[], single ◦ π1 ◦ π2,
�] ◦ π1

This is exactly what we already observed in Example 3.1.
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So far we only considered the cases for fi. Let us now take a closer look at fi+1,
in particular, if this is defined by a filter or a map operation. If

fi+1 = filter(ϕ) = src[[], if else ◦ (ϕ × single× (empty ◦ triv)), �],

we may reconsider the three cases above.

1. In case gi = single ◦ hi holds, we obtain

if else ◦ (ϕ × single× (empty ◦ triv)) ◦ hi

= if else ◦ ((ϕ ◦ hi) × (single ◦ hi) × (empty ◦ triv)),

which gives rise to fi+1 ◦ fi = map(hi) ◦ filter(ϕ ◦ hi), which is almost
swapping the order of a filter and a map operation. As a filter operation
presumably reduces the size of the argument, whereas we do not know such
a property for the map operation, we may use this to define another heuristic
optimisation rule:

Rule 4. Replace filter(ϕ) ◦ map(h) by map(h) ◦ filter(ϕ ◦ h).

2. In case gi = empty ◦ triv holds, there is nothing to be added to rule 2,
as the application of this rule already eliminates the filter operation fi+1
completely.

3. In case the first two cases do not apply to gi, we still know that fi([x1, . . . , xk]
= gi(x1)� . . . �gi(xk), which implies

filter(ϕ)(fi([x1, . . . , xk])) =
(filter(ϕ) ◦ gi)(x1)� . . . �(filter(ϕ) ◦ gi)(xk),

which gives rise to fi+1◦fi = src[[], filter(ϕ)◦gi,
�]. That is, we may shift

the filter operation inside the structural recursion, which presumably leads
to smaller intermediate results. Therefore, we obtain the following heuristic
optimisation rule:

Rule 5. Replace filter(ϕ) ◦ src[[], g, �] by src[[], filter(ϕ) ◦ g, �].

Example 5.2. Let us look at optimising the result from Example 4.2, which was
a translation of the XQuery query shown in Example 2.5. Applying rules 4 and
5 we can rewrite the query as follows:

map(π2) ◦ filter(ϕ) ◦ map((id × π1 × (first ◦ π3)) ◦ π2) ◦ src[[], id, �]◦
map(π1) ◦ single =
map(π2) ◦ map((id × π1 × (first ◦ π3)) ◦ π2)◦
filter(ϕ ◦ map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ src[[], id, �] ◦ map(π1)◦
single =
map(π2) ◦ map((id × π1 × (first ◦ π3)) ◦ π2)◦
src[[], filter(ϕ ◦ map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ id, �] ◦ map(π1)◦
single
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Next consider the case fi+1 = map(hi+1). As before, we do not have to reconsider
the second case above, as we cannot obtain more than rule 2, but we may look
at the other two cases again.

1. In case gi = single ◦ hi holds, we obtain

fi+1 ◦ fi = src[[], single ◦ hi+1 ◦ hi,
�] = map(hi+1 ◦ hi).

So we may combine two consecutive map operations into one using the fol-
lowing rule:
Rule 6. Replace map(h) ◦ map(g) by map(h ◦ g).

2. In the general case we have fi([x1, . . . , xk]) = gi(x1)� . . . �gi(xk), which
implies

map(hi+1)(fi([x1, . . . , xk])) = (map(hi+1)◦gi)(x1)� . . . �(map(hi+1)◦gi)(xk),

which further leads to fi+1 ◦ fi = src[[], fi+1 ◦ gi,
�]. That is, we may shift

the map operation inside the structural recursion, which defines the following
heuristic optimisation rule:
Rule 7. Replace map(h) ◦ src[[], g, �] by src[[], map(h) ◦ g, �].

Example 5.3. Carrying on from Example 5.2 above, we can now apply rules 6
and 7 to perform further optimisations as follows:

map(π2) ◦ map((id × π1 × (first ◦ π3)) ◦ π2)◦
src[[], filter(ϕ ◦ map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ id, �] ◦ map(π1)◦
single =
map(π2 ◦ (id × π1 × (first ◦ π3)) ◦ π2)◦
src[[], filter(ϕ ◦ map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ id, �] ◦ map(π1)◦
single =
src[[], map(π2 ◦ (id × π1 × (first ◦ π3)) ◦ π2) ◦ filter(ϕ◦
map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ id, �] ◦ map(π1) ◦ single

Finally, consider several for-clauses producing lists L1, . . . , Ln, which are then
combined into

L1 × · · · × Ln = src2[[], g, �](L1, L2 × · · · × Ln)
= src2[[], g, �](L1,

src2[[], g, �](L2,

. . .

src2[[], g, �](Ln−1, Ln) . . . ))

with g(x, L) = src[[], single ◦ (x × id), �](L). So basically we have to consider
src2[[], g, �](L1, L2) with L1 = src[[], g1,

�](L′
1). However, even, if we consider

the case g1 = single ◦ h1, this does not give rise to meaningful equations that
could be used to define further optimisation rules. It may, however, be the case
that structural recursion applied to the result of this product can lead to further
optimisation rules. We will explore this in the remaining subsection.



Towards Algebraic Query Optimisation for XQuery 191

5.2 The LWOR Clauses

As shown in the previous section, each let-clause gives rise to a map operation.
However, as there may be more than one for-clause, we have to take into account
that the result of processing the for-clauses leads to a list of tuples. Let � be
the number of for-clauses, and let m be the number of let-clauses. Then we
obtain

map(π1 × · · · × π� × k1 × · · · × km)(L1 × · · · × L�)

as the subquery resulting from the for- and the let-clauses. As for the prod-
uct we cannot derive anything meaningful in addition to the already discovered
optimisation rules.

So let us address the where-clause, which gives rise to another filter oper-
ation, say filter(ϕ). As this operation is applied to a list of (� + m)-tuples, we
may rewrite ϕ as a conjunction ϕ0 ∧ ϕ1 ∧ · · · ∧ ϕ�+m such that ϕi for i > 0 only
depends on the i’th component. Then we obtain

filter(ϕ)(map(π1 × · · · × π� × k1 × · · · × km)(L1 × · · · × L�)) =
filter(ϕ0)(src[[], (single ◦ π1) × · · · × (single ◦ π�)×
(if else ◦ ((ϕ�+1 ◦ k1) × (single ◦ k1)) × (empty ◦ triv))
× · · · ×
(if else ◦ ((ϕ�+m ◦ km) × (single ◦ km) × (empty ◦ triv))), �]
(filter(ϕ1)(L1) × · · · × filter(ϕ�)(L�))

As we can assume that an early application of a filter operation will be ad-
vantageous in terms of obtaining a smaller intermediate result, we can formulate
the following two heuristic optimisation rules, which would produce the result
above:

Rule 8. Replace filter(ϕ ∧ ψ) by filter(ϕ) ◦ filter(ψ).

Rule 9. Replace filter(ϕ) by filter(ϕ◦πi), if the operation is to be applied
to a list of k-tuples, and ϕ only depends on the i’th component.

Example 5.4. Continuing from Example 5.3 above, we can now apply rule 9 to
optimise the filter operation as follows:

src[[], map(π2 ◦ (id × π1 × (first ◦ π3)) ◦ π2) ◦ filter(ϕ◦
map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ id, �] ◦ map(π1) ◦ single =
src[[], map(π2 ◦ (id × π1 × (first ◦ π3)) ◦ π2) ◦ filter(ϕ ◦ π3◦
map((id × π1 × (first ◦ π3)) ◦ π2)) ◦ id, �] ◦ map(π1) ◦ single

Additionally, the corresponding Boolean operation ϕ in filter would be rewrit-
ten from

∧ ◦ ((eq ◦ ((π1 ◦ π3) × Arabica)) × (eq ◦ ((π2 ◦ π3) × 100)))

to
∧ ◦ ((eq ◦ (π1 × Arabica)) × (eq ◦ (π2 × 100))).
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6 Conclusion

In this paper we addressed the algebraic optimisation of XQuery based on a
translation to a rational tree query algebra. The model underlying this algebra
is based on a type system that supports constructors for records, lists and unions
as well as optionality and references. The query algebra uses operations defined
on this type system, in particular structural recursion for lists.

We demonstrated that the basic execution model of XQuery easily gives rise
to nested structural recursion. However, the function parameters involved in
these operations require complex definitions resulting from information about
the schema. These functions can be generated using compile-time linguistic re-
flection.

An obvious advantage of this approach is that it shifts part of the intrinsic
complexity of XQuery to the query compilation avoiding unnecessary path search
during query execution. Of course, this benefit cannot be claimed for ad-hoc
queries, in which case the overhead resulting from the translation may bite off
the performance gain resulting from the optimised query. A careful investigation
of what might still be gained for ad-hoc queries was so far beyond the scope of
our research, but will be addressed in future work.

The representation of XQuery by a query algebra gives rise to equivalences
that are the basis for query rewriting, which is performed in a way that will
always result in queries with presumably lower costs. It may further be used
for the generalisation of other query optimisation techniques such as join re-
ordering, tableau optimisation, and selection-projection optimisation [2, chapter
6]. These extensions to query optimisation will be addressed in future work. We
also plan to support the algebraic approach to query optimisation by rigorous
case-based comparison with other approaches to XQuery implementation and
optimisation.

An obvious further advantage of the use of a query algebra is type safety
as emphasised in [20]. Furthermore, a translation to a simple query algebra
enables the easy implementation of the operations and thus the integration with
programming languages, and the easy extension to other constructors such as sets
and multisets in case the order that comes with the list constructor is considered
unnecessary or even undesired. These two expected benefits, however, still have
to be explored in more detail in our future work. In particular, much of the
complexity resulting from path expressions is captured in the translation process.
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Abstract. In the last two decades, images are quite produced in increasing 
amounts in several application domains. In medicine, for instance, a large num-
ber of images of various imaging modalities (e.g. computer tomography, mag-
netic resonance, nuclear imaging, etc.) are produced daily to support clinical 
decision-making. Thereby, a fully functional Image Management System be-
comes a requirement to the end-users. In spite of current researches, the practice 
has proved that the problem of image management is highly related to image 
representation. This paper contribution is twofold in facilitating the representa-
tion of images and the extraction of its content and context descriptors. In fact, 
we introduce an expressiveness and extendable XML-based meta-model able to 
capture the metadata and content-based of images. We also propose an informa-
tion extraction approach to provide automatic description of image content us-
ing related metadata. It automatically generates XML instances, which mark up 
metadata and salient objects matched by extraction patterns. In this paper, we il-
lustrate our proposal by using the medical domain of lungs x-rays and we show 
our first experimental results. 

Keywords: Image Representation, Indexing Method, Information Extraction, 
Electronic Dictionaries, Specification Language. 

1   Introduction 

The problem of image management is a subject of extensive research in pattern rec-
ognition, information retrieval, and databases communities [1, 2]. The need of effi-
cient image management systems has several reasons to rapidly grow further and to 
play a very important role in the society. In medicine, for example, a large number of 
images of various imaging modalities (e.g. computer tomography, magnetic reso-
nance, nuclear imaging, etc.) are produced daily to support clinical decision-making. 
A lot of work has been done in order to integrate image data in the standard data 
processing environments of different applications [3, 6, 10, 13]. 

In essence, the problem of image management is highly related to image represen-
tation. In the literature, two complimentary approaches are used for image representa-
tion:  
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• The content-based approach: Issued from computer vision and pattern recognition 
community, the content-based approach uses the low-level features of images such 
as colors, textures, and shapes obtained through automatic extraction algorithms [1, 
2, 16]. Thus, image retrieval is done automatically by similarity matching methods. 
However good the content-based approach is, practice has shown that the use of 
complementary metadata description is essential. 

• The metadata-based approach: Issued from information retrieval and databases 
communities, the metadata-based approach consists of using alphanumeric attrib-
utes to describe the context and/or the content of an image. Thus, metadata-based 
image retrieval follows the traditional techniques (keywords, phrases, etc.) [14, 
19]. However in several application domains, it is mostly difficult or not possible 
to fully or adequately describe an image using metadata representation [6, 12, 16, 
25]. Due to problems of subjectivity and high-expressive representations. Further-
more, image description is usually done with human assistance, which is time-
consuming when having huge amount of data. 

The current trend is then towards a system that uses both metadata and content-
based image description [4, 23, 24]. A mixed use of both approaches, results to means 
of image management that can satisfy many application areas. However, the proposals 
so far lack to address issues of: 

 
• Extensible and high expressive image and salient objects description using both 

metadata and content-based representations, 
• Automatic extraction methods of both (low-level and metadata) features,  

 
In this paper, we present a novel image representation meta-model based on XML 

format. The key feature of the meta-model is that it captures in a single modeling 
meta-concept the low-level features, the structural and semantic properties, as well as 
the relationship descriptions of both multimedia object and meta-object. The image 
description meta-model proposed here considers the main features of a still image 
suggested in MPEG-7 standard [41]. On the other hand, we propose an information 
extraction approach to provide automatic description of images using related meta-
data. The main idea is to process some image related data, which are usually  
paragraphs of free natural text, in order to extract metadata and semantic features 
automatically. The extraction approach relies on extraction patterns that describe the 
context of relevant data and on a light parsing to recognize these data and to match 
them against extraction patterns. Once the matching holds successfully, the relevant 
metadata and features are tagged into a new XML document, which conforms to our 
XML-based meta-model. Hence, a repository of XML documents is built on the fly. 
Further documentary or database management systems can easily manipulate the im-
age data model and formulate XQL or SQL queries. We complete the scheme of our 
work with a study case in medical x-rays imaging domain.  

The paper is organized as follows. Section 2 presents a motivation example to be 
used throughout the paper. Related works are summarized in section 3. In section 4, 
we present our XML-based image data meta-model and illustrate it through a study 
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case in the medical domain. In section 5, we present a high-level specification lan-
guage to design extraction patterns; as well necessary dictionaries for lung x-ray are 
built and applied to extract relevant metadata and salient objects. Conclusions and fu-
ture directions are given in section 6. 

2   Motivation Example 

The aim of this work is to facilitate the image retrieval by providing multi-
dimensional representation. In this paper, we use the domain of lungs x-rays to illus-
trate our approach where each medical image (or a set of) is associated to a diagnosis 
written by the physician in a natural way as free text paragraphs. Through the paper, 
we use the following study case to illustrate how to present the entire required image 
information of both metadata and content-based using the meta-model, and how to de-
fine extraction patterns to extract relevant image information from diagnosis in order 
to fill in the meta-model. Fig. 1 shows both the image and the associated diagnosis, 
and the required extraction result which identifies salient objects, corresponding states 
and inter-relations, as well as other important metadata.  

 
“Mrs Danielle Lee, is a 44 years old patient, manifests low back pains, worsening shortness of 

breath, haemoptysis, and a weight loss of 10 lbs over the last three weeks. She has a smoking his-
tory of 2 packets of cigarettes per day for 27 years. Recently, she has decreased to 1 packet per day 
of "light" cigarettes. She claims that she only consumes alcohol on weekends”. 
Her medical record contains the following lungs X-ray with the attached diagnosis: 

 

 

Diagnosis : Lungs X-ray, taken at 
19/02/99, a Teratoma below the right-
shifted trachea inside the right lung 

Required Extraction Result 
 

- Salient objects: Teratoma, 
trachea, right lung 

- State: right-shifted 
- Relation: below, inside 
- Image Type: x-ray 
- Acquisition Date: 19/02/99 

Teratoma

 Information 
Extraction

  

Fig. 1. The study case: An example of a diagnosis and the required extraction result 

3   Related Work 

In the literature, image representation and retrieval follow two directions: the meta-
data oriented and the content-based oriented. For more than two decades, the work on 
content-based image analysis, representation and retrieval have known a big success 
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among researchers. As a result, several applications based on automatic low-level fea-
tures of color, texture, shape, etc. have been implemented [6, 10, 12]. Photobook, Ne-
tra, QBIC, Surfimage, VisualSeek, CAFIIR, etc. are some of the many content-based 
image retrieval systems [1, 3, 6, 12, 16]. However, these systems mainly focus on re-
trieval by low-level features and give emphasis (only keywords) or no emphasis to the 
role of metadata-based image retrieval.  

The image management by metadata approach has been practiced in different 
fields of applications such as medicine, GIS, the Web, etc. Keywords are an example 
of meta-data widely used in image description. It goes without saying that there is a 
great waste of data when replacing an image by a set of metadata descriptors. Since 
subjectivity, ambiguity and imprecision are usually associated to the context and the 
semantic content of images, metadata descriptions are mostly incomplete [14]. This is 
why, some meta-data approaches suggested image description on the basis of salient 
objects position and relationships [42, 43, 44, 45, 46]. However, they are found to be 
imperfect at retrieval process in several application domains where translation, scal-
ing, perfect and multiple rotations, or any arbitrary combination of transformations is 
applied. For instance, the spatial content in terms of relationships in surgical or radia-
tion therapy of brain tumors is decisive because the location of a tumor has profound 
implications on a therapeutic decision [22].  

In the literature, several hybrid image data models have been proposed [11, 22, 24] 
attempting to mix low-level feature with meta-data in order to provide multi-criteria 
queries. However, these models lack an appropriate representation of all necessary 
image related data for different applications. In [11] for example, the authors do not 
consider content and semantic representations of salient object related data and the re-
lationship between salient objects. The approaches provided in [22, 24] do not allow 
the integration of several types of low-level features. This is why, a new standard has 
emerged called MPEG-7 for providing description of multimedia data content [41]. It 
offers a set of Descriptors and Description Schemes aiming to enable common access 
(search, filtering and browsing) to multimedia content. However, MPEG-7 suffers 
from its inability to taxonomically hierarchize the descriptors and thus its inability to 
express their semantics. This is due to the XML Schema in MPEG-7 DDL (Definition 
Description Language). Other drawbacks are MPEG-7 non-modularity and non-
extensibility — or rather MPEG-7 inability to validate extensions of its description 
schemes. 

As mentioned earlier, several automatic low-level features extraction algorithms 
are provided in the literature [6, 10, 12]. However, only rare approaches conceive an 
automatic extraction of metadata values. Primitive meta-data extraction approaches 
provided writing customized programs in programming languages such as Perl [30]. 
This is impractical because the programs are too hard to maintain. Some other ap-
proaches defined specialized languages to create kind of Information Extraction Sys-
tems and Wrappers [31, 32, 33]. These languages are expressiveness, but mastering 
them still requires computer expertise and skillful programmers. Most of the extrac-
tion approaches [33, 34, 35], however, fail to extract properly relevant data, although 
the text appears to be structured in a highly regular fashion. The main reason, that 
makes an extraction fails to find metadata values, is the nature of the relevant data 
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structure, which is irregular e.g. missing or multiple metadata values in a text or even 
a permutation of their order.  

The growth in the amount of textual data that are available in electronic documents 
makes humans incapable of reading and synthesizing such a wealth of data. Informa-
tion Extraction (IE) is concerned with the extraction of relevant data from a collection 
of documents. In the literature [59], there are two main approaches for designing IE 
systems: the knowledge engineering approach and the empirical or corpus-based ap-
proach [60, 61]. In the first approach, the IE system is built manually by users and by 
using knowledge of the application domain. In the second approach, there is no simi-
lar need for expertise when customizing the system for a new domain. Instead, it re-
quires the annotation of the training corpus of documents to mark relevant data. A 
training algorithm ‘learns’ from the corpus how to extract relevant data from novel 
texts [62]. This approach is faster than the knowledge engineering approach, but re-
quires sufficient volume of training documents.  

Most of the techniques used for the empirical Natural Language Processing employ 
(and exclusively) statistical techniques (i.e., as n-gram models and Hidden Markov 
Models [63]), neural network [64], symbolic learning (i.e., transformation rules [65], 
decision trees [66] and symbolic methods [67]), relational learning and/or Inductive 
Logic Programming [68]. An intensive research has been found in the literature [20, 
69] to apply learning methods to the construction of IE systems.  

To our knowledge, the survey of the literature points out the beginning of the aca-
demic prototypes, which deal with the information extraction.  These approaches have 
evolved over the last decades but in some ways their behavior is not intuitive for non 
expert users and at times they do not behave the way the novice users may expect 
them to. However, the development process can be very laborious and requires exper-
tise in natural language processing and information extraction approaches.  

An approach of information extraction for users, who they are professional in a 
domain of interest (i.e. medical domain) and not expert in linguistic or programming 
languages, becomes interesting to match relevant data. An appropriate approach may 
stress on what a user wants to extract based on his/her knowledge of the domain 
rather than how to extract. The information extraction approach may also propose ex-
pressiveness and easy extraction patterns to deal with irregular structure of data that 
describes, for examples, images.   

4   Modeling Images 

We propose here an original image meta-model able to integrate the metadata and the 
content features related to the whole image and/or to its salient objects. Fig. 2 shows 
our model in the standard DTD format. We intentionally decided to use this format to 
provide generic description and domain independent approach. We note that DTD 
format can be easily converted into other semantic formats (such as XML schema, 
RDF, etc.) using current XML tools (XML spy, Stylus Studio, etc.). Our meta-model 
associates an abstraction level to both the metadata and the salient objects. The ab-
straction level notion is very important in our model and allows easy identifying of: 

 
1. The impact of the metadata on the image description.  
2. The granularity of content features. 
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Furthermore, our meta-model takes into consideration several types of relations 
(temporal, spatial, semantic, etc.) between image and its salient objects, and between 
salient objects. In the following, we detail each component and we illustrate this in 
our case study.  

 
<!ELEMENT ImageModel (MetaDataBased*, ContentBased*)> 
<!ELEMENT MetaDataBased (AbstractionLevel, MetaData*)> 
<!ELEMENT ContentBased (AbstractionLevel, SalientObject*)> 
<!ELEMENT AbstractionLevel (LevelName?, LevelDesription?)> 
<!ELEMENT MetaData (MetaName, MetaType, MetaValue)> 
<!ELEMENT SalientObject (Feature*, Relation*)> 
<!ATTLIST SalientObject SOI CDATA #REQUIRED > 
<!ELEMENT Relation (RelationType, RelationValue, Relationmember)> 
<!ELEMENT Relationmember EMPTY> 
<!ATTLIST Relationmember soi CDATA #REQUIRED > 
<!ELEMENT Feature (FeatureName?, Descriptor*)> 
<!ELEMENT Descriptor (DescriptorName, DescriptorValue, RepresentationFormatName)> 
<!ELEMENT DescriptorName (#PCDATA)> 
<!ELEMENT DescriptorValue (#PCDATA)> 
<!ELEMENT RepresentationFormatName (#PCDATA)> 
<!ELEMENT LevelDesription (#PCDATA)> 
<!ELEMENT LevelName (#PCDATA)> 
<!ELEMENT FeatureName (#PCDATA)> 
<!ELEMENT MetaName (#PCDATA)> 
<!ELEMENT MetaType (#PCDATA)> 
<!ELEMENT MetaValue (#PCDATA)> 
<!ELEMENT RelationType (#PCDATA)> 
<!ELEMENT RelationValue (#PCDATA)> 

 

Fig. 2. Our image meta-model in DTD format 

4.1   The MetaData-Based Level 

The metadata-based level captures the general data, which are external to the image 
content. In [22], three metadata sublevels are distinguished in the medical domain. 
This distinction is related to the data impact on image description:  

 
• The context-oriented sublevel: contains application-oriented data that are completely 

independent of the image content and have no impact on the image description. For 
example, it contains data such as the hospital name, the physician identity, the patient 
name, gender, etc. 

• The domain-oriented sublevel: includes data that are indirectly related to the image 
but strictly related to the application domain. For instance in the medical applica-
tion, it includes the medical doctor's general observations, previous associated dis-
eases, etc. This sublevel is very important because it allows one to highlight several 
associated issues (particularly when identifying associated medical anomalies). 

• The image-oriented sublevel: corresponds to the data that are directly associated to 
the image. For example, the image compression type, the format of image creation 
(X-ray, scanner, MRI, etc.), the incidence (sagittal, coronal, axial, etc.), the scene, 
the study (thoracic traumatism due to a cyclist accident), the series, image acquisi-
tion date, etc. These data can significantly help the image content description.  

 

Fig. 3 shows an example of the metadata-based content level. 
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<MetaDataBased> 

<AbstractionLevel> 

  <LevelName> Domain_Oriented </LevelName>  

  <LevelDesription> consists of the data that are directly or indirectly 
related to the image </LevelDesription>  

       </AbstractionLevel> 

<MetaData> 

  <MetaName>Patient Gender</MetaName>  

  <MetaType>String</MetaType>  

  <MetaValue>Woman</MetaValue>  

      </MetaData> 

<MetaData> 

  <MetaName>Patient Age</MetaName>  

  <MetaType>Integer</MetaType>  

  <MetaValue>44</MetaValue>  

       </MetaData> 

 <MetaData> 

  <MetaName>Disease History</MetaName>  

  <MetaType>Long</MetaType>  

  <MetaValue>low back pains, worsening shortness of breath, haemoptysis, 
and a weight loss of 10 lbs over the last three weeks. She has a 
smoking history of 2 packets of cigarettes per day for 27 years. 
Recently, she has decreased to 1 packet per day of "light" ciga-
rettes. She claims that she only consumes alcohol on week-
ends”</MetaValue>  

  </MetaData> 

</MetaDataBased> 

<MetaDataBased> 

<AbstractionLevel> 

  <LevelName>Image_Oriented</LevelName>  

  <LevelDesription> corresponds to the information that is directly asso-
ciated to the image creation, storage, and type  
</LevelDesription>  

      </AbstractionLevel> 

<MetaData> 

  <MetaName>Imaging Technique</MetaName>  

  <MetaType>String</MetaType>  

  <MetaValue>X-rays</MetaValue>  

      </MetaData> 

<MetaData> 

  <MetaName>Compression</MetaName>  

  <MetaType>String</MetaType>  

  <MetaValue>None</MetaValue>  

      </MetaData> 

<MetaData> 

  <MetaName>Acquisition Date</MetaName>  

  <MetaType>Date</MetaType>  

  <MetaValue>19/02/99</MetaValue>  

  </MetaData> 
</MetaDataBased> 

Fig. 3. Example of MetaData-Based content 

4.2   The Content-Based Level 

The content-based level describes the content of the image using several features de-
tected throughout an abstraction level. The image description meta-model proposed 
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here is designed in a manner that considers the common features of a still image sug-
gested in MPEG-7 standard. In our meta-model, content features can be assigned to 
the whole image and/or to its salient objects. Furthermore, the content-based level 
maintains relations of different types between either the salient objects, or the salient 
objects and the image. In the literature, physical, spatial and semantic features are 
commonly used and briefly described here below: 

 

The Physical Feature: describes the image (or the salient object) using its low-level 
features such as color, texture, etc. The color feature, for instance, can be described by 
our meta-model via several descriptors (such as color distribution, histograms, domi-
nant color, etc.) where each descriptor is obtained by assembling a set of values in re-
spect to a color space model. Fig. 4 shows an example of several physical features 
represented within our meta-model. The use of physical features allows answering 
non-traditional queries such as: “Find lung x-rays where they contain objects that are 
similar (using colors) to a given salient object SO2”. 

 
 

<ContentBased> 
<AbstractionLevel> 
    <LevelName>Physical Level</LevelName> 
    <LevelDesription> 

        describes the image (or  the salient object) using its low-level  features 
        </LevelDesription>  

</AbstractionLevel> 
<SalientObject SOI="Image"> 
    <Feature> 
        <FeatureName>Color</FeatureName>  
        <Descriptor> 
            <DescriptorName>Dominant Color     </DescriptorName> 
            <DescriptorValue>(162, 158, 168)     </DescriptorValue>  
            <RepresentationFormatName>  RGB Format  </RepresentationFormatName>  
        </Descriptor> 
    </Feature> 
</SalientObject> 
<SalientObject SOI="SO_2"> 
    <Feature> 
        <FeatureName>Texture</FeatureName>  
        <Descriptor> 
        <DescriptorName> Histogram   </DescriptorName>  
         <DescriptorValue>  (53, 54, 68, 14, 165, 152, 165) </DescriptorValue>  
            <RepresentationFormatName> CMY Format </RepresentationFormatName>  
        </Descriptor> 
    </Feature> 
</SalientObject> 

…….. 

Fig. 4. Example of content-based data applied on physical features description using our meta-
model 

The Spatial Feature: is an intermediate (middle-level) feature that concerns geometric 
aspects of either images or salient objects such as shape and position. Each spatial 
feature can have several descriptors such as: MBR (Minimum Bounding Rectangle), 
bounding circle, surface, volume, etc. Using our meta-model, each descriptor may 
have a set of values (Fig. 5). The use of spatial features allows replying to queries in 
medical systems such as: “Find lung x-rays where left lung surface is bigger than a 
given object SO1”. 
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<ContentBased> 
<AbstractionLevel> 
    <LevelName> Spatial Level </LevelName> 
    <LevelDesription>is an intermediate (middlelevel) feature that concerns 
geometric aspects of images (or salient objects) 
    </LevelDesription>  
</AbstractionLevel> 
<SalientObject SOI="SO_1"> 
    <Feature> 
        <FeatureName>Position</FeatureName>  
        <Descriptor> 
          <DescriptorName> Barycenter </DescriptorName> 
          <DescriptorValue>(120, 154) </DescriptorValue> 
          <RepresentationFormatName>2D Format </RepresentationFormatName>  
        </Descriptor> 
</Feature> 
<Relation> 
    <RelationType>Directional</RelationType>  
    <RelationValue>Aboveright</RelationValue>  
    <Relationmember soi="SO_2" /> 
</Relation> 
<Relation> 
    <RelationType>Directional</RelationType>  
    <RelationValue>Left</RelationValue>  
    <Relationmember soi="SO_3" />  
</Relation> 
<Relation> 
    <RelationType>Topological</RelationType>  
    <RelationValue>Disjoint</RelationValue>  
    <Relationmember soi="SO_2" /> 
</Relation> 
<Relation> 
    <RelationType>Topological</RelationType>  
    <RelationValue>Touch</RelationValue>  
    <Relationmember soi="SO_3" /> 
</Relation> 
</SalientObject> 
 … 

Fig. 5. Example of content-based data applied on spatial features description using our meta-
model 

The Semantic Feature: integrates high-level descriptions of image and salient-objects 
using application domain keywords. In the medical domain, for example, terms such 
as name (lungs, trachea, tumor, etc.), states (inflated, exhausted, dangerous, etc.) are 
commonly used to describe medical image content (Fig. 6). The aim of the semantic 
feature is to increase the expression power of users in a manner that usual domain 
terms can be used to describe and retrieve the image. The use of semantic features is 
important to answer for traditional queries in medical systems such as: “Find lung x-
rays where hypervascularized tumor is invading the left lung”. 

4.3   The Relation 

Our meta-model allows also representing several useful types of relations between sa-
lient objects (spatial, semantic, temporal, etc.). 
  

Spatial relations may exist either between two salient objects or a salient object and 
the image. Three types of spatial relations are considered in the literature [48]:  

 
• Metric relations: measure the distance between salient objects [47]. For in-

stance, the metric relation “far” between two objects A and B indicates that each 
pair of points Ai and Bj has a distance grater than a threshold δ. 
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• Directional relations: describe the order between two salient objects according 
to a direction, or the localization of salient object inside the image [46]. In the 
literature, fourteen directional relations are considered: 

 
- Strict: north, south, east, and west. 
- Mixed: north-east, north-west, south-east, and south-west. 
- Positional: left, right, up, down, front and behind. 
 

 
<ContentBased> 

<AbstractionLevel> 

       <LevelName> Semantic Level </LevelName>  

     <LevelDesription> integrates high-level descriptions of image (or sa-
lient-objects) with the use of an application domain oriented key-
words </LevelDesription>  

</AbstractionLevel> 

<SalientObject SOI="Image"> 

<Feature> 

<FeatureName />  

<Descriptor> 

  <DescriptorName> Diagnosis </DescriptorName>  

  <DescriptorValue> taken at 19/02/99, a tumor below the right-
shifted trachea (in the inferior part of the right lung) 
</DescriptorValue>  

  <RepresentationFormatName />  

</Descriptor> 

<Descriptor> 

  <DescriptorName> Keywords </DescriptorName>  

  <DescriptorValue> Lungs, Trachea, Tumor </DescriptorValue>  

  <RepresentationFormatName />  

</Descriptor> 

  </Feature> 

  </SalientObject> 

<SalientObject SOI="SO_1"> 

<Feature> 

  <FeatureName />  

<Descriptor> 

  <DescriptoName> Identification </DescriptorName>  

  <DescriptorValue> Trachea </DescriptorValue>  

  <RepresentationFormatName />  

</Descriptor> 

<Descriptor> 

  <DescriptorName> State </DescriptorName>  

  <DescriptorValue> Right-shifted </DescriptorValue>  

            <RepresentationFormatName />  

       </Descriptor> 

     </Feature> 

     </SalientObject> 

Fig. 6.  Description of the semantic features using our meta-model 

Furthermore, directional relations do not exist in several configurations. 
 

• Topological relations: describe the intersection and the incidence between ob-
jects [45]. Egenhofer [45, 48] has identified six basic relations: Disjoint, Meet, 



206 Y. Badr and R. Chbeir 

Overlap, Cover, Contain, and Equal. Topological relations present several char-
acteristics: 

  
- they are exclusive to two objects: there is one and only one topo-

logical relation between two objects,  
- they have absolute value because of their constant existence be-

tween objects, 
- they are transformation, translation, scaling, and zooming invariant. 

 

With our model, temporal or spatio-temporal relations can also be captured [21]. This 
type of relations is very useful to describe the evolution of image objects between two 
periods. In the medical domain, this kind of relation can be very helpful for users to 
study the impact of treatments (the evolution of tumor, the displacement of a fibri-
nocruorique clot through a deep vein of the lower limb, etc.). 

Furthermore, semantic relations are of high importance and can be considered in 
our meta-model as well. In several domains such as medicine, users need to search 
images using familiar terms like invading, attacking, shifting, etc.  

In this manner, the user will have access to a comprehensive and intelligent de-
scription of image and its related data. Relevant descriptions of an image can then be 
used to provide multi-criteria retrieval.  

5   Information Extraction 

We restrict our work in Information Extraction (IE) to the knowledge engineering  
approach. We have studied the potential of regular expressions in extracting informa-
tion. We have tracked several works similar to information extraction based on regu-
lar expressions and used in medical domains. These works are most commonly used 
as a means to identify biological terms [52], protein names [53] or as a way to extract 
relevant data based on ontology [54, 55].   

 In our context, applying information extraction to medical diagnosis aims to facili-
tate image description and retrieval processes. It allows extracting two types of data: 
metadata related to the image-oriented level, and semantic data related to the whole 
image and its salient objects such as the identification of objects, their states and rela-
tions. In the following paragraphs, we present the high-level specification language 
for information extraction applied to medical diagnosis and introduce the overall data 
extraction process. 

5.1   High-Level Specification Language 

Regular expressions are concise and expressiveness notation [28]. They are good rival 
for manual pattern recognition. Many people routinely use regular expressions to spec-
ify searches in text editors and with standalone tools such as the Unix grep utility [29]. 
Relevant data can be well located by describing their context and their characteristics. 
Informally, characteristics such as multiple values, missing value and permutations can 
be easily simulated by using basic operators in regular expressions like Kleene (*),  
 



 Automatic Image Description Based on Textual Data 207 

optional (?), union ( | ) and concatenation (white-space). Complex regular expressions 
can be built up from simpler ones by means of regular expressions operators and  
parenthesis. Because regular languages are closed under concatenation and union, the 
basic operators can be combined with any kind of regular expressions.  

Using regular expressions in information extraction from natural language corpus 
stipulates long expressions with increasing complexity to deal with most of possible 
cases. Clearly, long regular expressions with multiple nesting levels and operators be-
come unreadable and hard to maintain. Another drawback is encountered with regular 
expression engines [39, 40], which are defined on a finite set of letters. In such a way, 
each single word is composed of the underlying letters.  

To overcome major drawbacks and restraints of regular expressions, we extended 
the syntax of regular expressions by words and meta-words over the alphabet of any 
natural language such as the English's. Meta-words denote semantic categories of re-
lated words usually defined in dictionaries. Yet, another simple but powerful solution 
to resolve the visibility of long expressions is to provide layer-oriented approach to 
build regular expressions. Three layers can be introduced to decompose a long regular 
expression into modular pattern (called extraction pattern): term layer, expression 
layer and slot layer. Slot layer is made of expression layers including term layers. 
Such convenient extensions and hierarchy allow a concise and expressiveness abstrac-
tion for casual users to compose extraction patterns by a means of words, meta-words 
and layers. In this manner, one builds its dictionary of extraction patterns and assigns 
a set of extraction patterns to image description.  

The term layer consists of a finite set of terms. A term represents an abstraction of 
linguistic information in the text. A term t is either: 

 

• A word: denotes a sequence of letters delimited by simple quotes such as ‘tumor’, 
‘artery’, ‘near’, ‘in contact with’, ‘on the left’, and so on.  

• A meta-word denoting  
− Generic entities delimited by open and close angles such as numbers (e.g. 

<NB>), any word (e.g. <W>), empty word (e.g. <E>),  
− Classes of words such as general classes (e.g. <body>), specialized classes (e.g. 

<bodybones>),  
− Classes of expressions e.g. <metric> to denote metric expressions (ml, mol/mm, 

m2, etc.), <spatial> to denote directional or topological expressions (right, left, 
under, overlap, converge, join etc.), or <temporal> to denote time dimension 
(second, minute, hour, etc.). 

 
The expression layer contains a finite set of expressions. We denote by an expres-

sion a concatenation of terms by a means of separate operator (white-space, tabula-
tion, new-line). We say that an expression holds if a sequence of words in the text 
matches the expression. For example, the expression <body> ‘x-ray’ <show> <symp-
tom> ‘on’ ‘the’ <body> recognizes all sequences of any body part followed by the 
term ‘x-ray’, followed by the verb ‘show’, followed by any symptom, followed by the 
term ‘on’, and the term ‘the’, and finally by any body part.  

A slot layer is a set of alternates of expressions. We denote the alternate operator 
as | (pipe symbol), and we say that a slot holds if one of its expressions holds. For ex-
ample, the following slot of four date expressions:  
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<NB>  <month>  <NB> |  <NB> ’/’ <NB> ’/’ <NB> |  <day> ‘,’ <month> 
<NB> ’,’ <NB> | <month> <NB> ‘,’ <NB> 

can locate a date of the format 02 February 1969 or Sunday, February 02, 2003 and 
so on. 

Unary operators could be applied on expressions in slots such as kleene (*), op-
tional (?), and one or more (+). We note that priority order can be changed by paren-
thesis. For example, the expression (‘phone’ ‘:’? <NB> (‘-‘ <NB>)+ )*  keeps the 
usual interpretation as in regular expression syntax. 

An extraction pattern P is a finite and unordered set of slots/features. |P| denotes 
the cardinality of P (number of slots). Furthermore, an extraction pattern of cardinal-
ity n has n! possible combinations.  

Since the extraction patterns are slightly regular expressions, it is convenient to 
mark up relevant metadata once the regular expression holds. To deal with this issue, 
a key idea is to delimit relevant metadata by XML tags, and then to produce for each 
image and for its salient objects an XML document describing its representation in 
terms of content features and metadata attributes.  

In the extraction pattern, the tag name is specified by an identifier of the format 
TagName[term] or TagName[expression], where the TagName encloses the term or 
expression in the output when entirely the extraction pattern holds. Hence, the Tag-
Name[term] in extraction pattern is equivalently mapped to <TagName> term 
</TagName> in XML format and respectively to <TagName> expression 
</TagName> in the case of expression. 

Roughly speaking, the notation specification of terms, expressions, slots, and ex-
traction patterns is implemented as a formal syntax similar to procedural program-
ming languages, where identifiers of expressions, slots and patterns are declared and 
defined within the scope of a dictionary of extraction patterns. The formal syntax is il-
lustrated in Fig. 7. We observe that, at the expression level, the keyword expression 
declares an expression identifier, and the concatenation operator between sequence of 
terms and tagged terms defines its value. In similar way, the keyword slot declares a 
slot identifier at the slot level, and the identifier value is defined by the disjunction 
operator over a list of expression identifiers. Finally, a pattern identifier is declared by 
the pattern keyword. The definition of a pattern identifier is an unordered list of slot 
identifiers separated by a comma. However, identifiers of slot, respectively identifiers 
of expression, can be re-used in different patterns and respectively in different slots. 
All declarations and definitions are going inside the scope of a named dictionary, 
which is introduced after the keyword dictionary. 

 

Fig. 7. Formal syntax for declarations and definitions of extraction patterns 

dictionary dictionary_name: 
 
 

expression   expression_identifier =  concatenation of terms or tagged 
terms ; 
 
 

slot slot_identifier =  disjunction of  expression_identifiers ; 
 
 

pattern pattern_identifier = unordered list of slot_identifiers separated 
by comma ; 
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5.2   Dictionaries for Image Description 

For a given domain of interest, such as lungs x-rays', it is easy to elaborate dictionar-
ies for describing frequent words in the image description. A dictionary is a flat file of 
entries where each entry defines a lemma followed by its canonical form and a list of 
categories to which the lemma belongs. For example, the following entries: 
  

axes, axe: <position>, <topology>. 
axe,  axe: < position>, <topology>. 

 

denote the lemmas axe and its inflected plural noun axes. We also notice that position 
and topology stand for categories, which referred to by <position> and <topology> in 
extraction pattern. Often, it is as well useful to define compound words as lemma en-
try in dictionaries (e.g. hypervascular tumor), and to associate it with a category for 
high level of abstraction (e.g. tumor).  

In the discourse universe of a particular application, we distinguish two sets of dic-
tionaries: dictionaries of the current natural language e.g. English, and dictionaries of 
the current domain of interest i.e. the lungs x-ray domain. In spite of the large spec-
trum of frequent words, we build many dictionaries to cover the lungs x-ray domain 
such as anatomy of body parts, diseases, disorders, symptoms, sign, x-ray, etc. Fur-
thermore, special dictionaries related to pathology are also built to describe different 
exams like echo-doppler, radioisotopic, and irrigraphy. We completed our dictionary 
family with a list of spatial terms and rules. In fact, small dictionaries of special terms 
(e.g. above, under, near, etc) are enumerated to capture and deduce relationships be-
tween salient objects. It is interesting to notice that dictionaries are re-usable compo-
nents and they can be exchange across multiple application domains. 

The definitions of the natural language dictionaries and their entry structures are 
simply inherited from the electronic dictionaries of simple and compound words [49, 
50], which have been developed  at  the Laboratory of Automatic Documentation and 
Linguistics (LADL - University of Paris 7).  In reality, the dictionaries of simple 
words (DELAS) and compound words (DELAC) contain more than 430 000 canoni-
cal entries, which cover most of the words that annotate paragraphs. The dictionaries 
of a domain of interest can be easily viewed as subsets of linguistic dictionaries and 
thus can be built using tools such as INTEXT [51]. 

5.3   Application on Diagnosis  

Let us consider now the motivation example previously mentioned. The diagnosis re-
lated to the medical image mentions the existence of a teratoma below the right-
shifted trachea inside the right lung. Without any treatment, this information is used 
as a descriptor of the semantic level of the default salient object, which denotes the 
whole image (see Fig. 8). In background, the extraction mechanism is intended to 
identify the content of the semantic level in terms of salient objects and relations, like 
teratoma, trachea and right lung, as well as the metadata like the acquisition date of 
the image. Salient objects and metadata have to be structured. 
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<SalientObject SO_Id="Image"> 
……… 
 <Descriptor> 
   <DescriptorName> Diagnosis<DescriptorName/> 
   <Value> Lungs X-ray, taken at 19/02/99, a teratoma below the  

       right-shifted trachea inside the right lung </Value> 
   <RepresentationFormatName/> 
 </Descriptor> 
………     

</SalientObject> 
 

Fig. 8. A salient object and its diagnosis descriptor of an x-ray image 

By XML format conforming to the DTD of the meta-model, we emphasize the 
metadata-based level by looking for metadata features in the image-oriented sublevel. 
We consider the acquisition date, for example, with four possible expressions to rec-
ognize variant date formats. Then, a slot of date is defined as alternation of these ex-
pressions as follows:  

 
expression  AcquisitionDate1 = DATE[ <NB>  <month>  <NB> ]; 
 

expression  AcquisitionDate2 = DATE[ <NB> ’/’ <NB> ’/’ <NB> ];  
 

expression  AcquisitionDate3 = DATE[ <day> ‘,’ <month> <NB> ’,’ <NB> ]; 
 

expression  AcquisitionDate4 = DATE[ <month> <NB> ‘,’ <NB> ]; 
 

slot Acquisition_date = AcquisitionDate1 | AcquisitionDate2 | AcquisitionDate3 | Acquisi-
tionDate4 ;  

 
When applying the date slot to the diagnosis, the second expression will recognize 

the date ‘19/02/99’ and produce a date in the metadata image-oriented sublevel as il-
lustrated in Fig. 9. 

As we mentioned previously in semantic sublevel, we are interested in capturing 
salient objects features and different types of relations between salient objects. For 
that, several dictionaries, such as lung anatomy and pathology types are necessarily to 
refer to their contents by means of categories in extraction patterns. 

 
<AbstractionLevel> 
  <LevelName>Image_Oriented</LevelName> 
     </LevelDesription/> 
</AbstractionLevel> 
<MetaData> 
  <MetaName>Acquisition_Date</MetaName> 
  <MetaType>Date</MetaType> 
  <MetaValue>19/02/99</MetaValue> 
</MetaData> 

Fig. 9.  Output of the slot Acquisition date 

In our context, body parts and diseases identify convenient salient objects. In simi-
lar way, directional, metric and topological relations can be described by spatial rela-
tion dictionary.  

Fig. 10 snapshots a subset of our dictionaries used in metadata and semantic ex-
traction process. Each entry in the lung anatomy is classified under multi-axial taxon-
omy, which means that a term can be referred to by several categories or meta-words 
(e.g. the term posterior basal is referred by bronchial and lung categories). In  
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   …… 
adenocarcinoma: <lungPathology > 
bronchioloalveolar: <lungPathology 
bronchogenic cyst: <lungPathology 
carcinoid: <lungPathology 
chondrosarcoma: <lungPathology 
histoplasmosis granuloma: <lungPathology> 
lymphoma: <lungPathology 
mesothelioma : <lungPathology> 
mucoepidermoid carcinoma: <lungPathology> 
pericardial cyst: <lungPathology> 
squamous cell : <lungPathology> 
synchronous tumors: <lungPathology > 
teratoma: <lungPathology > 
thymic cyst: <lungPathology > 
thymoma: <lungPathology > 
thyroid: <lungPathology > 
   …… 

 
Pathologic Types 

   …… 
right lung: <lung>  
right trachea: <lung> 
right upper lobe bronchi: <rightMiddleLobe>,<bronchial>,<lung> 
right upper apical posterior: <rightUpperLobe>,<bronchial>,<lung> 
right upper apical anterior: <rightUpperLobe>,<bronchial>,<lung>  
right middle lobe bronchi: <rightMiddleLobe>, <bronchial>,<lung> 
right middle lateral: <rightMiddleLobe>,<bronchial>,<lung> 
right middle medial: <rightMiddleLobe>,<bronchial> 
right lower lobe bronchi: <rightLowerLobe>,<bronchial>,<lung> 
superior  medial basal: < rightLowerLobe >,<bronchial>,<lung> 
superior  anterior basal: < rightLowerLobe >,<bronchial>,<lung> 
superior  lateral basal: < rightLowerLobe >,<bronchial>,<lung> 
posterior basal: <bronchial>, <lung> 
   
 …… 
 
 
 

Right Lung Anatomy 

……
near:<metric> 
far :<metric> 
right:<directional> 
left: <directional> 
up: <directional> 
down: <directional> 
west: <directional> 
east: <directional> 
front: <directional> 
below: <directional> 
disjoint:<topological> 
meet: <topological> 
overlap: <topological> 
cover: <topological> 
contain: <topological> 
inside: <topological> 
cover<topological> 
…… 

Spatial Relations 

 

Fig. 10.  Snapshots of lung pathology, anatomy of the right lung bronchial and relations 

contrast, entries in pathology and spatial relation dictionaries are classified under sin-
gle category. 

Based on dictionary categories, we propose some of possible expressions allowing 
capturing salient objects, their states, and relations in diagnosis text. Of course, other 
expressions can be figured out to cover large number of possible cases. Finally, a di-
agnosis slot as an alternation of all possible expressions is built. 

 
expression diagnosis1 = SO_x[<lung>] <W>* REL1[<relation>] <W>* 
SO_y[<lungPathology>] ; 

 

expression diagnosis2 = SO_x[<lung>] <W>* REL1[<relation>] <W>* 
SO_y[<lungPathology>] <W>*   REL2[<relation>] <W>* SO_z[<lung>]; 

 

expression diagnosis3 = SO_x[<lung>] <W>* REL1[<relation>] STATE1[<W> ’-‘ <W> 
’ed’] <W>*  SO_y[<lungPathology>] <W>* REL2[<relation>] <W>* SO_z[<lung>] ; 

 

slot diagnosis = diagnosis1 | diagnosis2 | diagnosis3 ; 

 
Clearly, the first diagnosis is looking for a lung body part by using the <lung> 

category as a salient object SO_x, and lung disease by referring to <lungPathology> 
category as salient object SO_y. A relation REL1 separates SO_x and SO_y preceded 
and followed by many words as indicating by <W>*. The comprehension of the re-
maining diagnosis expressions are defined similarly. 
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The resulting of applying diagnosis slot identifies teratoma, trachea and right lung 
as salient objects, below and inside as directional and topological relations respec-
tively, and at last right-shifted as a state. Fig. 11 shows the extraction result on the sa-
lient object SO_1. 

<SalientObject SOI="SO_1"> 
 <Feature> 
  <FeatureName/> 
  <Descriptor> 
   <DescriptorName>Identification </DescriptorName> 
   <DescriptorValue>Trachea</DescriptorValue> 
   <RepresentationFormatName/> 
  </Descriptor> 
  <Descriptor> 
   <DescriptorName>State</DescriptorName> 
   <DescriptorValue>Right-shifted</DescriptorValue> 
   <RepresentationFormatName/> 
  </Descriptor> 
 </Feature> 
</SalientObject> 
 <Relation> 
  <RelationType>Directional</RelationType> 
  <RelationValue>below</RelationValue> 
  <Relationmember soi="SO_2"/> 
 </Relation> 

 

Fig. 11. Trachea salient object and its directional relation 

By using previous expression identifiers, date and diagnosis, we construct an ex-
traction pattern and we associate it to the original diagnosis descriptor. The resulting 
is an extraction of the following format: 

  

Pattern LungDiagnosis = date, diagnosis+ ; 
 

 
In order to validate our approach of information extraction, we have developed a 

wrapper, called Xtractor [15], to implement the specification language of extraction 
patterns. The Xtractor relies on linguistic parsing of paragraphs. It applies natural lan-
guage dictionaries as well as dictionaries related to a specific domain such as the lung 
diagnosis. More details about Xtractor are provided in [15]. 

6   Experimental Results 

To validate our approach, we have selected a corpus of 105 patient records provided 
by the Rouen Hospital throughout the TIPHAD project [56]. We have focused on ex-
tracting relevant data such as salient objects, relations between salient objects, acqui-
sition date, image-type, states and symptoms from patient records paragraphs of lung 
diagnosis to in order to annotate the images. The first experimental results aimed at 
validating the precision of our approach but time-based performance was out of scope 
of tests. For our experiments, we have chosen 45 records for the tuning set and 60 re-
cords for the test set. We used the tuning set to write the extraction patterns. More-
over, we generalize the extraction patterns through a process of successive  
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refinement. Beside the linguistic dictionaries of the French language provided by the 
INTEX [57] community, we built medical dictionaries describing the lung x-rays do-
main. In order to run the experimental tests, we built the following dictionaries: 

 

• medicament.dic: containing 3693 medical entries, 
• lungPathologie.dic: with 728 entries to describe the lung anatomy and the re-

lated organisms, 
• maladie.dic: including 69 diseases, 
• symptomes.dic: involving 33 symptoms, 
• relation.dic: containing 53 spatial and directional relations,  
• glossaire.dic: having 2638 medical terms. 

 
A dictionary of 60 extraction patterns has been used to extract relevant data from x-
lungs diagnosis records. The compilation of these extractions generated 463 elemen-
tary regular expressions for all the expressions and the slots. 

According to the information retrieval, we define a fact as a particular attribute-
value pair such a salient object (Salient_Object, trachea), a relation (Relation, inside) 
or a metadata (Acquisition_date, 2/2/2006). If N is the number of facts in the corpus, 
C is the number of facts declared correctly, and I is the number declared incorrectly, 

the recall ratio is N
C , and the precision ratio is IC

C
+ .  

In experiments we conducted, the Xtractor applies extraction patterns against the 
pre-processed paragraphs in order to locate relevant data. As illustrated in Table 1, we 
were able to achieve recall and precision ratios of 0.91% and 0.97%. The measure-
ment of precision and recall shows precisely the correctness of the system based on 
the small corpus. These high numbers are typical of the traditional information extrac-
tion for small corpus and well hand written patterns. 

Table 1. Recall and precision results 

 N C I recall precision 

Salient Object1 60 57 2 0.95 0.96 

Special Relation 60 60 1 1.00 0.98 

Salient Object2 60 56 2 0.93 0.96 

State 49 44 1 0.89 0.97 

Acquisition date 60 58 0 0.96 1.00 

Image type 51 51 0 1.00 1.00 

Symptoms 83 62 5 0.74 0.92 

All attributes  423 388 11 0.91 0.97 

7   Conclusion 

In this paper, we presented an original image XML-based meta-model able to de-
scribe the image content and all related metadata. Built on several abstraction levels, 
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our meta-model provides the possibility to be adaptable to the domain and the user 
needs (in respect to all current standards). We are convinced that our multi-spaced 
image meta-model brings new trends and provides all requirements for main efficient 
image operations (in particular indexing and retrieval operations. 

On the other hand, we observed that image diagnosis could be used to extract some 
meaningful data. The relevant data exhibits some regularity that can be processed ef-
ficiently by regular expressions. We extended the notation of regular expressions by 
providing meta-words and a mutli-layer approach to define a high specification lan-
guage for extraction patterns. The notations of the specification language render long 
and complex regular expressions to be concise, expressiveness and easy to maintain 
by casual users. The extraction patterns are mainly based on different metadata per-
mutations, expression disjunction and on the context to identify salient objects. Along 
the paper, we showed how applying extraction patterns over image descriptions pro-
duce XML instances conforming to the DTD of our meta-model. We validate the fea-
sibility of our information extraction approach to annotate images with the Xtractor 
prototype. In fact, the high specification language and the extraction wrapper (Xtrac-
tor) are implemented; a lexical and syntax analyzer is developed by JavaCC [37] to 
recognize extraction patterns and to generate regular expressions. The resulting regu-
lar expressions [38] are then used by the Xtractor wrapper to match relevant meta-
data. The initial experiment results show satisfactory performance near 0.91% recall 
and 0.97% precision on test data.  

We are currently building and updating the electronic dictionaries for a large cover 
of x-lung images. Furthermore, a large corpus of image descriptions and domain-
specific dictionaries are compulsory to improve the precision and recall ratio and to 
test the complexity and the performance of our application. Future work will also ad-
dress the integration of low-level features algorithms to provide fully-automated de-
scription process and multi-criteria queries possibilities.    
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Abstract. There has been a rapid growth in the use of semistructured data in
both web applications and database systems. Consequently, the design of a good
semistructured data model is essential. In the relational database community, al-
gorithms have been defined to transform a relational schema from one normal
form to a more suitable normal form. These algorithms have been shown to pre-
serve certain semantics during the transformation. The work presented in this
paper is the first step towards representing such algorithms for semistructured
data, namely formally defining the semantics necessary for achieving this goal.
Formal semantics and automated reasoning tools enable us to reveal the inconsis-
tencies in a semistructured data model and its instances. The Object Relationship
Attribute model for Semistructured data (ORA-SS) is a graphical notation for
designing and representing semistructured data. This paper presents a methodol-
ogy of encoding the semantics of the ORA-SS notation into the Web Ontology
Language (OWL) and automatically verifying the semistructured data design us-
ing the OWL reasoning tools. Our methodology provides automated consistency
checking of an ORA-SS data model at both the schema and instance levels.

Keywords: Semistructured Data, Semantic Web, Ontology Web Language, ORA-
SS, Formal Verification.

1 Introduction

Semistructured data has become prevalent in both web applications and database sys-
tems. With the growth in its usage, questions have arisen about the effective storage and
management of semistructured data. In the relational database community, algorithms
have been defined to transform a relational schema from one norm form to a more
suitable normal form. These algorithms have been shown to preserve certain semantics
during the transformation. In order to verify the correctness of the similar transforma-
tions for semistructured data, we need to have a standard representation of schemas and
the transformation operators that are used to transform schemas. This process can be
achieved by describing a formal model for semistructured data schemas and verifying
that instances of schemas conform to the schema model. Then the basic transformation
operators can be formally defined on this schema model. In this paper we undertake the
first step of the process defined above.
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Many data modeling languages [1–4] for semistructured data have been introduced to
capture more detailed semantic information. The Object Relationship Attribute model
for Semistructured data (ORA-SS) [5, 6] is a semantically enriched graphical notation
for designing and representing semistructured data [6–9]. The ORA-SS data model not
only reflects the nested structure of semistructured data, but also distinguishes between
object classes, relationship types and attributes. The main advantages of ORA-SS over
other data models are its ability to express the semantics that are necessary for designing
effective storage and management algorithms, such as the degree of an n-ary relation-
ship type, and distinguish between the attributes of relationship types and the attributes
of object classes. This semantic information is essential, even crucial for semistructured
data representation and management, but it is lacking in other existing semistructured
data modeling notations.

Semistructured data also acts as a hinge technology between the data exchanged on
the web and the data represented in a database system. Recent research on the World
Wide Web has extended to the semantics of web content. More meaningful informa-
tion is embedded into the web content, which makes it possible for intelligent agent
programs to retrieve relevant semantic as well as structural information based on their
requirements. The Semantic Web [10] approach proposed by the World Wide Web Con-
sortium (W3C) attracts the most attention. It is regarded as the next generation of the
web. The Web Ontology Language (OWL) [11] is an ontology language for the Se-
mantic Web. It consists of three increasingly expressive sub-languages: OWL Lite, DL
and Full. OWL can provide not only the structural information of the web content but
also meaningful semantics for the information presented. The aim of this paper is to en-
code the semantics of the ORA-SS notation into the Web Ontology Language (OWL)
and automatically verify the semistructured data design using the OWL reasoning tool
RACER [12].

The reason that we chose the OWL ontology language is because of the strong re-
lationship between semistructured data and web technologies. Semistructured data is
typically represented using eXtensible Markup Language (XML). XML is a commonly
used exchange format in many web and database applications. The introduction of the
Semantic Web is to overcome the structure-only information of XML, and to provide
deeper semantic meaning to the data on the web. The ORA-SS language is a semantically
enriched data modeling notation for describing semistructured data. From the point of
capturing more semantic information in content representation, OWL and ORA-SS are
two approaches that fulfil the same goal, where the former is rooted in the web commu-
nity and the latter has its basis in the database community. Thus it is natural to explore
the synergy of the two approaches. We believe that semantic web and its reasoning tools
can contribute greatly to the design and verification phases of ORA-SS data models.

In this paper, we propose a methodology to verify ORA-SS data design using OWL
and its reasoner RACER. Fig. 1 shows the overall process of our approach. Firstly, we
define an ontology model of the ORA-SS data modeling language in OWL. It provides
a rigorous semantic basis for the ORA-SS graphical notation and enables us to repre-
sent customized ORA-SS data models and their instances in OWL. Secondly, ORA-SS
schema and instance models are translated into their corresponding OWL ontologies. Fi-
nally, RACER is used to perform the automated verification of the ORA-SS ontologies.
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Fig. 1. The overall approach to verify ORA-SS data models using OWL

Our approach is able to provide automatic consistency checking on large ORA-SS data
models and their instances. Examples are given through out the paper to illustrate the
reasoning process.

A major concern in designing a good semistructured data model using ORA-SS for a
particular application is to reveal any possible inconsistencies at both the schema and in-
stance levels. Inconsistencies at the schema level arise if a customized ORA-SS schema
model does not conform to the ORA-SS semantics. Inconsistencies at the instance level
arise if an ORA-SS instance model is not consistent with its ORA-SS schema definition.
For example, an inconsistency that might arise at the schema level is the specification
of a ternary relationship between only two object classes. An inconsistency that might
arise at the instance level is a many to many relationship between objects when a one to
many relationship is specified in the schema. These two aspects of validation are essen-
tial in the semistructured data design process. Thus, the provision of formal semantics
and automated reasoning support for verifying ORA-SS semistructured data modeling
is very beneficial.

There has been other research that provides a formal semantics for semistructured
data. For example, the formalization of DTD (Document Type Definition) and XML
declarative description documents using expressive description logic has been presented
by Calvanese et al. [13]. Anutariya et al. presented the same formalization using a the-
oretical framework developed using declarative description theory [14]. Also spatial
tree logics has been used to formalize semistructured data by Conforti and Ghelli [15].
More recently, hybrid multimodal logic was used to formalize semistructured data by
Bidoit et al. [16]. We also applied a similar approach to formalize ORA-SS data models
using Z/EVES [17]. While this work has helped us develop a better understanding of
the semantics of semistructured data, it does not provide automated verification. In an-
other research we presented a formalization of the ORA-SS notation in the Alloy [18]
language. Although the automated verification was available using the Alloy Analyzer,
it had a scalability problem, making the verification of large sets of semistructured data
impossible. In addition, there were also research for providing better validation support
of semistructured data, such as algorithms on incremental validation of XML docu-
ments [19, 20]. However, these approaches still focused on the syntax-only checking of
semistructured data instances.
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The remainder of the paper is organized as follows. Section 2 briefly introduces
the background knowledge for the semistructured data modeling language ORA-SS,
Semantic Web ontology language OWL and its reasoning tool - RACER. Section 3
presents OWL semantics of the ORA-SS notation and its data models. Section 4 demon-
strates the ontology reasoning process through a Course-Student ORA-SS data model
example. Examples of both class-level reasoning and instance-level reasoning are pre-
sented. Section 5 concludes the paper and outlines the future work.

2 Background

2.1 The ORA-SS Data Modeling Language

The Object-Relationship-Attribute model for Semistructured data (ORA-SS) is a se-
mantically enriched data modeling language for semistrctured data design [5, 6]. It has
been used in many XML related database applications [8, 9]. The ORA-SS notation
consists of four basic concepts: object class, relationship type, attribute and reference.
A full description of the ORA-SS data modeling language can be found in [5, 6].

cs, 2, 4:n, 3:8

cp, 2, 0:5, 1:n
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Fig. 2. The ORA-SS schema diagram of a Course-Student data model

– An object class is like an entity type in an ER diagram, a class in an object-oriented
diagram or an element in an XML document. The object classes are represented as
labeled rectangles in an ORA-SS diagram.

– A relationship type represents a nesting relationship among object classes. It is de-
scribed as a labeled edge by a tuple (name, n, p, c), where the name denotes the
name of relationship type, integer n indicates degree of relationship type, p repre-
sents participation constraint of parent object class in relationship type and c repre-
sents participation constraint of child object class in relationship type.
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– Attributes represent properties and are denoted by labeled circle. An attribute can be
a key attribute which has a unique value and is represented as a filled circle. Other
types of attributes include single valued attribute, multi-valued attribute, required
attribute, composite attribute, etc. An attribute can be a property of an object class or
a property of a relationship type.

– An object class can reference another object class to model recursive and symmetric
relationships, or to reduce redundancy especially for many-to-many relationships. It
is represented by a labeled dashed edge.

For the design of semistructured data, an ORA-SS schema diagram represents the
constraints on relationships, participations and cardinalities among the instances of
the object classes in a semistructured data model. For example, Fig. 2 represents an
ORA-SS schema diagram of a Course-Student data model. In the diagram, each
course has code, title, and exam venue as its attributes. A relationship type
cs, which indicates the relationship between a course object class and a student
object class is binary, and each course consists of 4 to many students and each stu-
dent can select 3 to 8 courses. The student object class in the cs relationship type
has a reference pointing to its complete definition. The grade attribute is an attribute
belonging to the cs relationship type. Based on the above schema definition, two lev-
els of validation can be carried out. Firstly, consistency checking can be performed to
determine whether the defined schema model is correct with respect to the ORA-SS
language. Secondly, consistency checking can be performed to determine whether a
particular instance of semistructured data satisfies the defined ORA-SS schema model.
This checking could be done manually only if it is a relatively small sized model. How-
ever, examining complicated and large ORA-SS data models for semistructured data
is almost manually impossible. Furthermore, manual diagrammatic checking does not
guarantee the consistency of the schema since it is likely that inconsistencies are not
revealed when the schema is large and complicated. Therefore, automated verification
support based on the formal specification of ORA-SS semantics is highly desirable.

2.2 Semantic Web – OWL and RACER

Description logics [21] are logical formalisms for representing information about knowl-
edge in a particular domain. It is a subset of first-order predicate logic and is well-known
for the trade-off between expressivity and decidability. Based on RDF Schema [22] and
DAML+OIL [23], the Web Ontology Language (OWL) [11] is the de facto ontology lan-
guage for the Semantic Web. It consists of three increasingly expressive sub-languages:
OWL Lite, DL and Full. OWL DL is very expressive yet decidable. As a result, core
inference problems, namely concept subsumption, consistency and instantiation, can be
performed automatically.

In OWL, conceptual entities are organized as classes in hierarchies. Individual en-
tities are grouped under classes and are called instances of the classes. Classes and
individuals can be related by properties. Table 1 summarizes the ‘DL syntax’ used in
the following sections. Interested readers may refer to [11] for full details.

RACER, the Renamed ABox and Concept Expression Reasoner [12], is a reasoning
engine for ontology languages DAML+OIL and OWL. It implements a TBox and ABox
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Table 1. Summary of OWL syntax used in the paper

Notation Explanation
�/⊥ Super class/sub class of every class
N1 
 N2 N1 is a sub class/property of N2

C1 = C2 Class equivalence
C1 � / � C2 Class intersection/union
≥ 1 P 
 C Domain of property P is class C
� 
 ∀ P.C Range of P is C
� 
≤ 1 P Property P is functional
P2 = (−P1) Property P2 is inverse of P1

∀ / ∃ P.C allValuesFrom/someValuesFrom restriction, giving the class that
for every instance of this class that has instances of property P,
the values of the property are all/some members of the class C

= / ≤ / ≥ n P Cardinality restriction, the class each of whose instances mapped
by property P forms a set whose cardinality must be exactly/less
than/greater than n

reasoner for the description logic ALCQHIR+(D)− [12]. It is automated for reasoning
over OWL Lite and DL ontologies.

3 Modeling the ORA-SS Data Model in OWL

In this section, we present the modeling of ORA-SS schema and instance diagram as
OWL ontologies in three steps. Firstly, we define the ORA-SS ontology, which contains
the OWL definitions of essential ORA-SS concepts, such as object class, relationship
type, etc. Secondly, we show how individual ORA-SS schema diagram ontologies can
be constructed based on the ORA-SS ontology together with a case tool for achieving
this. Finally, in Section 3.6, we show how ORA-SS instance diagrams can be repre-
sented in OWL. To effectively illustrate the modeling approach, the schema diagram in
Fig. 2 is used as a running example.

3.1 The ORA-SS Ontology

The ORA-SS ontology 1 contains the OWL definitions for ORA-SS concepts such
as object class, relationship type, attribute, etc. We model these definitions as OWL
classes. The basic assumption here is that all named OWL classes are by default mu-
tually disjoint, which is implied in the ORA-SS diagrams. Essential properties are also
defined in the ontology. This ontology, with a namespace of ora-ss, can be used later
to define ontologies for ORA-SS schema diagrams.

Entities – As each object class and relationship type can be associated with attributes
and other object classes or relationship types, we define an OWL class ENTITY to

1 Due to the space limit, only part of the ORA-SS OWL semantics are presented in the paper. A
complete ORA-SS ontology can be found at http://www.comp.nus.edu.sg/˜liyf/
ora-ss/ora-ss.owl.
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represent the super class of both object class and relationship type. The OWL class
structure is shown as follows.

ENTITY 
 �
OBJECT 
 ENTITY
RELATIONSHIP 
 ENTITY

ATTRIBUTE 
 �
ENTITY � ATTRIBUTE = ⊥
OBJECT � RELATIONSHIP = ⊥

It may not seem very intuitive to define relationship types as OWL classes. In ORA-
SS, relationship types are used to relate various object classes and relationship types,
it might seem more natural to model relationship types as OWL properties. However,
there are two reasons that we decide to model relationship types as OWL classes. Firstly,
the domain of ORA-SS relationship types can be relationship types themselves, when
describing the relationships of ternary and more. Secondly, classes and properties in
OWL DL are disjoint. In our model, an OWL relationship type consists of instances
which are actually pointers to the pairs of object classes or relationship types that this
relationship relates.

As ORA-SS is a modeling notation for semistructured data, we need to cater for
unstructured data. We define a subclass of ATTRIBUTE called ANY as a place holder
to denote any unstructured data appearing in a model. In ORA-SS, a composite at-
tribute is an attribute composed of other attributes. We also define it as a subclass of
ATTRIBUTE.

ANY 
 ATTRIBUTE
ANY � CompositeAttribute = ⊥

CompositeAttribute 
 ATTRIBUTE

Properties – A number of essential properties are defined in the ora-ss ontology.

1. Properties among entities
In ORA-SS, object classes and relationship types are inter-related to form new re-
lationship types. As mentioned above, since we model relationship types as OWL
classes, we need additional properties to connect various object classes and rela-
tionship types.
Firstly, this is accomplished by introducing two object-properties, parent and child,
which map a RELATIONSHIP to its domain and range ENTITYs. The following
statements define the domain and range of parent and child. As in ORA-SS, the do-
main of a relationship (parent) can be either an object class or another relationship
type, i.e., an ENTITY. The range (child) must be an OBJECT. These two proper-
ties are functional as one relationship type has exactly one domain and one range
node. Moreover, we assert that only relationship types can have parents and child
but object classes cannot.

≥ 1 parent 
 RELATIONSHIP
� 
 ∀ parent.ENTITY
� 
≤ 1 parent

≥ 1 child 
 RELATIONSHIP
� 
 ∀ child.OBJECT
� 
≤ 1 child

OBJECT 
 ¬ ∃ parent.�
OBJECT 
 ¬ ∃ child.�

RELATIONSHIP 
 ∀ parent.ENTITY
RELATIONSHIP 
 ∀ child.OBJECT

Secondly, we define two more object-properties: p-ENTITY-OBJECT and p-
OBJECT-ENTITY. These two properties are the inverse of each other and they serve
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as the super properties of the properties that are to be defined in later ontologies of
ORA-SS schema diagrams. Those properties will model the restrictions imposed
on the relationship types.
The domain and range of p-ENTITY-OBJECT are ENTITY and OBJECT, respec-
tively. Since the two properties are inverses, the domain and range of p-OBJECT-
ENTITY can be deduced.
p-OBJECT-ENTITY = (−p-ENTITY-OBJECT)
≥ 1 p-ENTITY-OBJECT 
 ENTITY
� 
 ∀ p-ENTITY-OBJECT.OBJECT

ENTITY 
 ∀ p-ENTITY-OBJECT.OBJECT

≥ 1 p-OBJECT-ENTITY 
 OBJECT
� 
 ∀ p-OBJECT-ENTITY.ENTITY

OBJECT 
 ∀ p-OBJECT-ENTITY.ENTITY

2. Properties between entities and attributes
First of all, we define an object-property has-ATTRIBUTE, whose domain is EN-
TITY and range is ATTRIBUTE. Every ENTITY must have ATTRIBUTE as the range
of has-ATTRIBUTE.

≥ 1 has-ATTRIBUTE 
 ENTITY
� 
 ∀ .has-ATTRIBUTE.ATTRIBUTE

ENTITY 
 ∀ has-ATTRIBUTE.ATTRIBUTE

For modeling the ORA-SS candidate and primary keys, we define two new object
properties that are sub-properties of has-ATTRIBUTE. We also make the property
has-primary-key inverse functional and state that each ENTITY must have at most
one primary key. Moreover, we restrict the range of has-candidate-key to be AT-
TRIBUTE.

has-candidate-key 
 has-ATTRIBUTE
� 
 ∀ has-candidate-key.ATTRIBUTE

ENTITY 
≤ 1 has-primary-key

has-primary-key 
 has-candidate-key
� 
≤ 1 has-primary-key−

3.2 Object Classes

In this subsection, we present how ORA-SS object classes in a schema diagram are rep-
resented in OWL. Moreover, we will discuss how object class referencing is modeled.

Example 1. The schema diagram in Fig. 2 contains a number of object classes 2.

course 
 OBJECT
student 
 OBJECT
hostel 
 OBJECT
· · ·

tutor 
 OBJECT
sport club 
 OBJECT
home 
 OBJECT
· · ·

Referencing – In ORA-SS, an object class can reference another object class to refer
to its definition. We say that a reference object class references a referenced object
class. In our model, we model the reference object class as a sub-class of the referenced
object class. If the two object classes have the same name, the reference object class
is renamed. By doing so, we ensure that all the attributes and relationship types of the
referenced object classes are reachable (meaningful). Note that there are no disjointness
axioms among the reference and referenced object classes.

2 For brevity reasons, the class disjointness statements are not shown from here onwards.
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Example 2. In Fig. 2, the object class student is referenced by object classes student and
member. Hence, we rename the reference student to student 1 and add the following
axioms in to the model.

student 
 OBJECT student 1 
 student member 
 student

3.3 Relationship Types

In this subsection, we present the details of how ORA-SS relationship types are modeled
in OWL. Various kinds of relationship types, such as disjunctive relationship types and
recursive relationship types are also modeled. We begin with an example to show the
basic modeling of relationship types.

Example 3. Fig. 2 contains 5 relationship types.

cs 
 RELATIONSHIP
sh 
 RELATIONSHIP

sm 
 RELATIONSHIP
cp 
 RELATIONSHIP

cst 
 RELATIONSHIP

The relationship type cs is bound by the parent/child properties as follows. We use both
allValuesFrom and someValuesFrom restriction to make sure that only the intended class
can be the parent/child class of cs.

cs 
 ∀ parent.course
cs 
 ∃ parent.course

cs 
 ∀ child.student 1
cs 
 ∃ child.student 1

Auxiliary Properties – As discussed in Section 3.1, for each ORA-SS relationship
type we define two object-properties that are the inverse of each other.

Example 4. Take cs as an example, we construct two object-properties: p-course-
student and p-student-course. Their domain and range are also defined.

p-student-course = (−p-course-student)
p-student-course 
 p-ENTITY-OBJECT
p-student-course 
 p-OBJECT-ENTITY

≥ 1 p-course-student 
 course
� 
 ∀ p-course-student.student 1

≥ 1 p-student-course 
 student 1
� 
 ∀ p-student-course.course

Participation Constraints – One of the important advantages that ORA-SS has over
XML Schema language is the ability to express participation constraints for parent/child
nodes of a relationship type. This ability expresses the cardinality restrictions that must
be satisfied by ORA-SS instances.

Using the terminology defined previously, ORA-SS parent participation constraints
are expressed using cardinality restrictions in OWL on a sub-property of p-ENTITY-
OBJECT to restrict the parent class Prt. Child participation constraints can be similarly
modeled, using a sub property of p-OBJECT-ENTITY.

Example 5. In Fig. 2, the constraints captured by the relationship type cs state that a
course must have at least 4 students; and a studentmust take at least 3 and at most
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8 courses. The following axioms are added to the ontology. The two object-properties
defined above capture the relationship type between course and student.

course 

∀ p-course-student.student 1

course 
≥ 4 p-course-student

student 1 
 ∀ p-student-course.course
student 1 
≥ 3 p-student-course
student 1 
≤ 8 p-student-course

Disjunctive Relationship Types – In ORA-SS, a disjunctive relationship type is used
to represent relationship consists of disjunctive object classes, where only one object
can be selected to the relationship instance from the set of disjunctive object classes. To
model this in OWL, we will create a dummy class as the union of the disjoint classes
and use it as the range of the object-property representing the relationship type. Together
with the cardinality constraint that exactly one individual of the range can be selected,
the disjunctive relationship type can be precisely modeled.

Example 6. In Fig. 2, sh is a disjunctive relationship type where a student must live in
exactly one hostel or one home, but not both. We use the following OWL statements to
model this situation. Note that p-student-sh is an object-property that maps student to
its range class home hostel, which is the union of hostel and home.

hostel 
 OBJECT
home hostel 
 OBJECT
≥ 1 p-student-sh 
 student

home 
 OBJECT
home hostel = hostel � home
� 
 ∀ p-student-sh.hostel home

hostel � home = ⊥

Given the above definitions, the disjunctive relationship type sh in the schema diagram
can be modeled as follows.

student 
 ∀ p-student-sh.hostel home student 
= 1 p-student-sh

Recursive Relationship Types – Recursive relationship types in ORA-SS are modeled
using referencing. In our model, by defining the reference object class as a sub class of
the referenced object class, recursive relationship types can be modeled as a regular
relationship type.

Example 7. Fig. 2 depicts such a recursive relationship type where a course object class
has at most 5 prerequisite objects, whereas a prerequisite must have at least one course.
This can be modeled as follows.

course 
 �
≥ 1 p-course-prerequisite 
 course
p-prerequisite-course = (−p-course-prerequisite)

course 

∀ p-course-prerequisite.prerequisite

course 
≤ 5 p-course-prerequisite

prerequisite 
 course
� 
 ∀ p-course-prerequisite.prerequisite

prerequisite 

∀ p-prerequisite-course.course

prerequisite 
≥ 1 p-prerequisite-course

3.4 Attributes

The semantically rich ORA-SS model notation defines many kinds of attributes for ob-
ject classes and relationship types. These include candidate and primary keys, single-
valued and multi-valued attributes, required and optional attributes, etc. In this subsec-
tion, we will discuss how these attributes can be modeled.
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Example 8. The schema diagram in Fig. 2 generates the following OWL classes for
attributes.

code 
 ATTRIBUTE
title 
 ATTRIBUTE
exam venue 
 ATTRIBUTE
· · ·

grade 
 ATTRIBUTE
student number 
 ATTRIBUTE
sport 
 ATTRIBUTE

Modeling Various Definitions – As OWL adopts the Open World Assumption [11]
and an ORA-SS model is closed, we need to find ways to make the OWL model cap-
ture the intended meaning of the original diagram. The following are some modeling
conventions.

– For each ENTITY, we use an allValuesFrom restriction on has-ATTRIBUTE over the
union of all its ATTRIBUTE classes. This denotes the complete set of attributes that
the ENTITY holds.

Example 9. In the running example, the object class student has student number and
name as its attributes.

student 
 ∀ has-ATTRIBUTE.(student number � name)

– Each entity (object class or relationship type) can have a number of attributes. For
each of the entity-attribute pairs in an ORA-SS schema diagram, we define an object-
property, whose domain is the entity and range is the attribute. For an entity Ent and
its attribute Att, we have the following definitions.

has-Ent-Att 
 has-ATTRIBUTE
≥ 1 has-Ent-Att 
 Ent

� 
 ∀ has-Ent-Att.Att

Example 10. In Fig. 2, the object class sport club has an attribute name. It can be
modeled as follows.

≥ 1 has-sport club-name 
 sport club
� 
 ∀ has-sport club-name.name

has-sport club-name 
 has-ATTRIBUTE
sport club 
 ∀ has-sport club-name.name

Required and Optional Attributes – We use cardinality restrictions of respective
object-properties on the owning ENTITY to model the attribute cardinality constraints
in the ORA-SS model. The default is (0:1). We use a cardinality ≥ 1 restriction to state
a required attribute.

Example 11. Take sport club as an example again, it can have 0 or 1 sport.

sport club 
≤ 1 has-sport club-sport

Single-Valued vs. Multi-valued Attributes – Single-valued attributes can be modeled
by specifying the respective object-property as functional. Multi-valued attributes, on
the contrary, are not functional. An attribute is by default single valued.

Example 12. In Fig. 2, object tutor has a single-valued attribute name. This can be
modeled as follow.

≥ 1 has-tutor-name 
 tutor
� 
 ∀ has-tutor-name.name

has-tutor-name.name 
 has-ATTRIBUTE
� 
≤ 1 has-tutor-name
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Primary Key Attributes – For an entity with a primary key attribute, we use an all-
ValuesFrom restriction on the property has-primary-key to constrain it. Since we have
specified that has-primary-key is inverse functional, this suffices to show that two dif-
ferent objects will have different primary keys. Moreover, for every attribute that is the
primary key attribute, we assert that the corresponding object property is a sub property
of has-primary-key.

Example 13. In Fig. 2, object class course has an attribute code as its primary key
and this is modeled as follows. The hasValuesFrom restriction enforces that each
individual must have some code value as its primary key.

course 
 ∀ has-primary-key.code course 
 ∃ has-primary-key.code

Disjunctive Attributes – Similar to the treatment of disjunctive relationship types, we
create a class as the union of a set of disjunctive attribute classes. Together with the
cardinality ≤ 1 restriction, disjunctive attributes can be represented in OWL.

Example 14. In Fig. 2, course has a disjunctive attribute exam venue, which is either
lecture theater or laboratory. It can be modeled as follows.

lecture theatre 
 ATTRIBUTE
laboratory 
 ATTRIBUTE
exam venue 
 ATTRIBUTE

course 
 ∀ has-course-exam venue.exam venue
course 
≤ 1 has-course-exam venue

lecture theatre � laboratory = ⊥
exam venue = lecture theatre � laboratory

Fixed-Value Attributes – A fixed-value attribute is one whose value is the same for
every instance and cannot be changed. To model this, we define the attribute to be an
OWL class that has only one instance. Suppose that the object obj has a fixed-value at-
tribute attr, whose value is attr val. The OWL ontology will then contain the following
statements.

obj 
 OBJECT
attr 
 ATTRIBUTE
attr val ∈ attr
attr = {attr val}

has-obj-attr 
 has-ATTRIBUTE
≥ 1 has-obj-attr 
 obj
� 
 ∀ has-obj-attr.attr

3.5 Presenting and Transforming ORA-SS Diagrams in OWL

In the previous subsections, we presented some of the formal definitions of the ORA-
SS language constructs in OWL. Part of the ontology (in OWL XML syntax) of the
ORA-SS schema diagram in Fig. 2 is shown below.

<owl:Class rdf:about="#student">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="http://www.comp.nus.edu.sg/
˜liyf/ora-ss/ora-ss.owl#has-primary-key"/>
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<owl:someValuesFrom rdf:resource="#student_number"/>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:maxCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#int">1

</owl:maxCardinality>
<owl:onProperty>

<owl:FunctionalProperty rdf:ID=
"has-student-student_number"/>

</owl:onProperty>
</owl:Restriction>

</rdfs:subClassOf>

Note that because OWL has XML syntax as its presentation form, further automated
transformation tools can be easily developed to assist the translation from ORA-SS data
models into their corresponding OWL representations. We are in the process of devel-
oping a visual case tool which provides a high-level and intuitive environment for con-
structing ORA-SS data models in OWL. Our ORA-SS modeling tool was built based
on the meta-tool Pounamu [24]. Pounamu is a meta-case tool for developing multi-view
visual environments. Fig. 3 shows the Course-Student schema example in section 2.1
defined by the tool. From the diagram, we can see that the customized schema model

Fig. 3. A case tool for ORA-SS data modeling

can be defined easily by creating instances of the pre-defined model entities and asso-
ciations. By triggering the defined event handler menu item in the tool, it transforms all
the default XML format of each entity in the diagram into a single OWL representation
of the ORA-SS schmea model and saves it for later reasoning purpose. One ongoing
development is to develop our tool as a plugin within the overall Protégé plug-and-play
framework.
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In the next section, we show how to model ORA-SS instance diagrams using OWL
individuals based on the classes, properties defined in the OWL schema ontology.

3.6 Instance Diagrams in OWL

The representation of ORA-SS instance diagrams 3 in OWL is a straightforward task. As
the name suggests, instance diagrams are semistructured data instances of a particular
ORA-SS schema diagram. The translation of an instance diagram to an OWL ontology
is described by the following 3 steps:

1. Defining individuals and stating the membership of these individuals, by declaring
them as instances of the respective OWL classes of object classes, relationship types
and attributes defined in the schema diagram ontology.

2. For each OWL class, we state that all its instances are different from each other.
3. By making use of the object-properties defined in the schema diagram ontology, we

state the relationships among the individuals.

This is best illustrated with an example. We create an instance ontology for the
schema ontology defined in Fig. 2. In this paper, we use a table form to illustrate the
ORA-SS OWL instances. This is just for the sake of easy representation. Actual ORA-
SS instances are defined in the ORA-SS instance diagrams and transformed into their
corresponding OWL representations in XML.

– In Table 2 below, we give a brief overview of the individuals under respective object
classes 4.

Table 2. Instances of various objects of Fig. 2

Object classes Instances
course course1, course2, course3, course4
student student1, student 2, ..., student8
prerequisite course1, course2, course3, course4
home home1, home2
hostel hostel1, hostel2, hostel3
tutor tutor1, tutor2, tutor3
sport club club1, club2, club3
member student1, ..., student6

– Next, we define the instances of various attributes of Fig. 2 in Table 3 listed in the
appendix.

– Having defined all the instances of objects and attributes, the next step is to relate
them. We proceed by populating various memberships. In Table 4 listed in the ap-
pendix, we show the pairs of instances related by each relationship type in Fig. 2.
It is worthwhile pointing out that ternary or higher-degree relationships are viewed

3 In this paper, we present the schema instances in a table format rather than in a proper ORA-SS
instance diagram. This is just for the sack of presentation purpose only.

4 Due to the space limit, not all the OWL individuals of the schema diagram in Fig. 2 are shown.



Reasoning About ORA-SS Data Models Using the Semantic Web 233

as pairs of pairs. Also note that for brevity reasons, we will refer to the members
of relationships such as cs, cst and sm as cs1,.., cs24, cst1,.. cst24 and sm1, .. sm6
respectively.

– The last task in modeling this instance diagram in OWL is to associate object
classes and relationship types to the attributes. We show the instances of object
classes and relationship types of Fig. 2 in Table 5 listed in the appendix. Note that
attributes whose names are in italic and bold fonts are primary key attributes.

By following the above steps, we can easily represent an ORA-SS instance diagram
in OWL 5. Similarly, an OWL instance diagram generation functionality is under de-
velopment in the ORA-SS case tool presented earlier. In addition, direct transformation
from an XML document into its ORA-SS OWL instance can also be implemented. With
the constraints defined in the OWL schema ontology, we are able to perform automated
reasoning over these instances (OWL individuals), as detailed in the next section.

4 Reasoning About ORA-SS Data Models

In this section, we demonstrate the validation of ORA-SS schema and instance diagrams
using OWL and RACER. We will again use Fig. 2 as the running example.

4.1 Verification of Schema Diagram Ontologies

In order to ensure the correctness of an ORA-SS schema diagram, a number of proper-
ties have to be checked, such as:

– The parent of a relationship type should be either a relationship type or an object
class, where the child should only be an object class.

– The parent of a higher-degree relationship type (higher than 2) must be a relationship
type.

– The child participants of a disjunctive relationship type or attribute must be a set of
disjunctive object classes or attributes.

– A composite attribute or disjunctive attribute has an attribute that is related to two or
more sub-attributes.

– A candidate (primary) key attribute of an object class must be selected from the set
of attributes of the object class.

– A composite key is selected from 2 or more attributes of an object class.
– An object class or relationship type can have at most one primary key, which must be

part of the candidate keys.
– Relationship attributes have to relate to an existing relationship type.
– An object class can reference one object class only, but an object class can be refer-

enced by multiple object classes.

5 The complete OWL representation of the Course-Student instance example can be found
athttp://www.comp.nus.edu.sg/˜liyf/ora-ss/case_instance.owl.
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The above are some of the criteria for validating a schema diagram against the ORA-
SS notation. To manually check the validity of a given schema diagram against these
constraints is a highly laborious and error-prone task. By following the methodology
presented in this section systematically, potential violations of the above constraints can
be avoided. This is because the formal semantics of the OWL language allows precise
specifications to be expressed.

Fig. 4. Schema inconsistency detected by RACER

Moreover, highly efficient OWL reasoners such as RACER can check the consis-
tency of ORA-SS schema diagrams in OWL automatically. For example, suppose that
in Fig. 2, the child of relationship type cs is mistakenly associated with a relationship
type cst instead of the reference object class student 1. This error can be picked up by
RACER automatically, as shown in Fig. 4. Three classes, cs, cst and tutor are high-
lighted as inconsistent. It is inconsistent because both cst and tutor are related to cs
using existential or cardinality restrictions. Other types of checking can be similarly
performed.

4.2 Verification of Instance Diagram Ontologies

The ORA-SS instance validation is defined to check whether there are any possible
inconsistencies in a semistructured data instance, where an ORA-SS instance should be
consistent with regard to the designated ORA-SS schema diagram. Possible guidelines
for validating an ORA-SS instance are as follow.
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– Relationship instances must conform to the parent participation constraints, e.g.,
the number of child objects related to a single parent object or relationship instance
should be consistent with the parent participation constraints; and the number of
parent objects or relationship instances that a single child object relates to should
be consistent with the child participation constraints.

– In a disjunctive relationship, only one object class can be selected from the disjunc-
tive object class set and associated to a particular parent instance.

– For a candidate key (single or composite), its value should uniquely identify the
object that this key attribute belongs to.

– Each object can have one and only one primary key.
– All attributes have their own cardinality and the number of attributes that belong

to an object should be limited by the minimum and maximum cardinality values of
the attribute.

– For a set of disjunctive attributes, only one of the attribute choices can be selected
and associated to an object instance.

These are some of the criteria of instance level validation. Given an ORA-SS instance,
we first transform it into its corresponding OWL instance representation, then verify
the consistency of the instance ontology automatically by invoking ontology reasoners
capable of ABox reasoning. We will use RACER to demonstrate the checking of the
above ontology through a few examples.

– Entity/attribute cardinality constraints
In the schema ontology, each instance of relationship type cst has exactly one tutor.
Suppose that in the instance ontology, (course1, student) has both tutor1 and tutor2
as the child for the relationship type cst.

〈cs1, tutor1〉∈ p-cs-tutor 〈cs1, tutor2〉∈ p-cs-tutor

By using RACER, the instance ontology is detected to be inconsistent.
– Primary key related properties

Suppose that by accident, two students, student4 and student5, are both assigned to
the same student number.

〈student4, student number 4〉
∈ student number

〈student5, student number 4〉
∈ student number

Similarly, RACER instantly detects the inconsistency.

4.3 Debugging ORA-SS OWL Models

The OWL reasoners, such as RACER, can perform efficient reasoning on large ontolo-
gies automatically. They can detect whether an OWL ontology is consistent or not as
a whole. However, it is not capable of locating which individual caused the inconsis-
tency. When checking satisfiability (consistency), the OWL reasoners can only provide
a list of unsatisfiable classes and offer no further explanation for their unsatisfiability.
It means that the reasoner can only conclude if an ORA-SS data model is consistent
and flag the invalid class or individuals. The process of ‘debugging’ an ORA-SS data
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model is left for the user. When faced with several unsatisfiable individuals in a mod-
erately large ORA-SS data model, even expert ontology engineers can find it difficult
to work out the underlying error. Debugging an ontology has been well recognized as
a non-trivial task. To provide some debugging assistance for the inconsistent ORA-SS
models, we have built an OWL debugging tool 6 based on the heuristics [25]. Our OWL
debugger has been designed to adopt the general OWL DL ontology and it can also be
used to explain the errors in the ORA-SS data models as well.

Determin the most
general conflict

Generate the debugging
super−conditions

analyse the most general

explanation
conflict and generate

of OWL classes
consistency checking Identify the 

unsatisfiable core

OWL Reasoner

Debugger

Fig. 5. The debugging process

Fig. 6. Debugging the ORA-SS schema model

Figure 5 illustrates the main steps of the debugging process. The user selects an
OWL class for debugging, which is checked to ensure it is indeed inconsistent, and
that the user is making a valid request to the debugger. The debugger then attempts to
identify the unsatisfiable core for the input class in order to minimize the search space.
The unsatisfiable core is the smallest set of local conditions (direct super classes) that

6 The work is supported in part by the CO-ODE project funded by the UK Joint Information
Services Committee and the HyOntUse Project (GR/S44686) funded by the UK Engineering
and Physical Science Research Council.
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leads to the class in question being inconsistent. Having determined the unsatisfiable
core, the debugger attempts to generate the debugging super conditions, which are the
conditions that are implied by the conditions in the unsatisfiable core. The debugger
then examines the debugging super conditions in order to identify the most general
conflicting class set, which is analyzed to produce an explanation as to why the class in
question is inconsistent.

For example, Figure 6 shows the result of the debugging for the inconsistent example
in Section 4.1, where the child of relationship type cs is mistakenly associated with
another relationship type cst instead of the reference object class student 1. Previously,
three classes, cs, cst and tutor were highlighted as inconsistent by the RACER. With
the help of our debugger, it was pinpointed that the cs should have an OBJECT in its
child relationship and not an individual from the cst relationship type. This is exactly
the reason for the inconsistency as found using manual inspection earlier.

5 Conclusion

In this paper, we explored the synergy between the Semantic Web and the database mod-
eling approaches in the context of validating semistructured data design. We demon-
strate the approach of using OWL and its reasoning tool for consistency checking of
the ORA-SS data models and their instances. The advantages of our approach lie in the
following aspects. Firstly, we defined a Semantic Web ontology model for the ORA-SS
data modeling language. It not only provides a formal semantic for the ORA-SS graph-
ical notation, but also demonstrates that Semantic Web languages such as OWL can be
used to capture deeper semantic information of semistructured data. Furthermore, such
semantics can be adopted by many Semantic Web applications that use the ORA-SS
semistructured data model. Secondly, an ontology reasoning tool was adopted to per-
form automated verification of ORA-SS data models. The RACER reasoner was used to
check the consistency of an ORA-SS schema model and its instances. We illustrated the
various checking tasks through a Course-Student example model. In our previous
work, we used the Alloy Analyzer for the validation of the ORA-SS data model [18].
The main advantage of our OWL approach over this is that consistency checking on
large ORA-SS data models are made feasible. The current OWL reasoner can classify
an ontology with 30,000 concepts within 4 seconds [26], which well satisfies the needs
for any real-sized ORA-SS schemas and their instances.

In the future, we will further develop the visual case tool for editing and auto-
generation of ORA-SS data models into their corresponding OWL representations for
machine verification. Furthermore, we plan to extend and concentrate our work on
defining the basic transformation operators that are used to transform ORA-SS schemas
and providing verification for transformed schemas of semistructured data. By doing so,
verifying the results of applications or databases that transforms the schema of semi-
structured data can be possible. In addition, we plan to extend the semantics of ORA-SS
in OWL to investigate normalization issues in semistructured data design. The normal
form of the ORA-SS data model for designing semistructured databases has been pro-
posed in [9]. We would like to verify whether the semantics of a normalized schema is
the same as its original form, showing whether a normalization algorithm changes the
semantics of the schema during the transformation process.
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Appendix

Table 3. Instances of various attributes of the ORA-SS schema diagram in Fig. 2

Attribute Instances
code CS1101, CS1301, MA1102, CS2104
title “Java Programming”, “Computer Architecture”, “Calculus”, ”Pro-

gramming Languages”
lecture threater LT27, LT34, LT8
laboratory SR6, PL1, PL2
grade A, B, C, D, F
student number stu no 1, stu no2, stu no3, ..., stu no 8
name (student) Jim, Gill, Mike, Rudy, Martin, Shirley, Tracy, Keith
number (home) 20-22, 6-7
street name (home) Sunset Avenue, Avenue George V
name (hostel) KR, SH, KEVII
staff number stf no 1, stf no 2, stf no 3
name (staff) J-Sun, G-Dobbie, M-Jacksoon
preferred area RE, SE, FM, DB, Network, Grid, SW
feedback positive, negative, neutral
name (sport club) yachting club, boxing club, tennis club
sport yachting, boxing, tennis
join date aug-02-2002, jan-25-2003, may-15-2003, oct-01-2003, dec-31-

2004, jul-19-2005
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Table 4. Instances of relationship types of the ORA-SS schema diagram in Fig. 2

Relationship types Members
cs (course1, student1), (course1, student2), (course1, student3),

(course1, student4), (course1, student5), (course1, student6),
(course1, student7), (course1, student8), (course2, student5),
(course2, student6), (course2, student7), (course2, student8),
(course2, student1), (course2, student2), (course2, student3),
(course2, student4), (course3, student1), (course3, student3),
(course3, student5), (course3, student7), (course4, student2),
(course4, student4), (course4, student6), (course4, student8)

cp (course4, course1)
sh (student1, home1), (student2, home2), (student3, hostel1), (stu-

dent4, hostel2), (student5, hostel3), (student6, home1), (student7,
hostel), (student8, hostel2)

cst ((course1, student1), tutor1), ((course1, student2), tutor2),
((course1, student3), tutor3), ((course1, student4), tutor1),
((course1, student5), tutor2) ((course1, student6), tutor3),
((course1, student7), tutor1), ((course1, student8), tutor2),
((course2, student5), tutor3), ((course2, student6), tutor1),
((course2, student7), tutor2), ((course2, student8), tutor3),
((course2, student1), tutor1), ((course2, student2), tutor2),
((course2, student3), tutor3), ((course2, student4), tutor1),
((course3, student1), tutor2), ((course3, student3), tutor3),
((course3, student5), tutor1), ((course3, student7), tutor2),
((course4, student2), tutor3), ((course4, student4), tutor1),
((course4, student6), tutor2), ((course4, student8), tutor3)

sm (club1, student1), (club1, student3), (club2, student2), (club2, stu-
dent4), (club3, student5), (club3, student6)
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Table 5. Attribute values associated with the objects and relationships in Fig. 2

Entity Attribute association

course

instances code title exam venue
course1 CS1101 “Java Programming” LT27
course2 CS1301 “Computer Architecture” LT34
course3 MA1102 “Calculus” LT8
course4 CS2104 “Programming Languages” SR6

student

instances name student number
student1 Jim stu no1
student2 Gill stu no2
student3 Mike stu no3
student4 Rudy stu no4
student5 Martin stu no 5
student6 Shirley stu no 6
student7 Tracy stu no 7
student8 Keith stu no 8

cs

instances grade instances grade instances grade
cs1 A cs2 B cs3 B
cs4 C cs5 C cs6 B
cs7 A cs8 F cs9 B
cs10 D cs11 C cs12 B
cs13 B cs14 B cs15 F
cs16 A cs17 C cs18 D
cs19 C cs20 D cs21 A
cs22 B cs23 B cs24 A

home
instances number street name
home1 20-22 Sunset Avenue
home2 6-7 Avenue George V

hostel

instances name
hostel1 KR
hostel2 SH
hostel3 KEVII

tutor

instances staff number name preferred area
tutor1 stf no 1 J-Sun SE, RE, FM, SW
tutor2 stf no2 G-Dobbie SE, DB, Network
tutor3 stf no 3 M-Jackson RE, SE, Grid

cst

instances feedback instances feedback instances feedback
cst1 positive cst2 neutral cst3 neutral
cst4 neutral cst5 neutral cst6 neutral
cst7 positive cst8 negative cst9 neutral

cst10 negative cst11 neutral cst12 neutral
cst13 neutral cst14 neutral cst15 negative
cst16 positive cst17 neutral cst18 negative
cst19 neutral cst20 negative cst21 positive
cst22 neutral cst23 neutral cst24 positive

sport club

instances name sport
club1 yachting club yachting
club2 boxing club boxing
club3 tennis club tennis

sm

instances join date instances join date
sm1 aug-02-2002 sm2 may-15-2003
sm3 jan-25-2003 sm4 oct-01-2003
sm5 jul-19-2005 sm6 dec-31-2004
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Abstract. Recently researchers have tried to apply ontology to the product 
information domain. From a practical point of view, a key problem to 
streamline this trend is how to make a product ontology database operational. 
Technical solutions should consider the characteristics that a pragmatic product 
ontology database contains; first, the database size is quite huge, and second, 
ontological manipulation and utilization should be realistically feasible. We 
recently engaged in a project to build an operational product ontology system. 
The system is designed to serve as a product ontology knowledge base, not only 
for the design and construction of product databases but also for the search and 
discovery of products. From the insights gained through this project, we believe 
that ontological modeling and its implementation on an operational database, as 
well as the building applications which exploit ontological benefits, are the 
most important facets towards the successful deployment of a practical product 
ontology system. As such, searching techniques should take into account the 
features of an underlying ontological model especially with product searching 
being one of the most popular applications within product information systems. 
In this paper, we present these two issues; product ontology modeling and 
searching techniques. Although our work presented herein may not be the only 
way to build an operational product ontology database, it may serve as an 
important reference model for similar projects in future. 

1   Introduction 

Product information is an essential component in e-commerce. It contains information 
such as pricing, features, and terms about the goods and services offered or requested 
by the trade partners. A base of precisely and clearly defined product information is a 
necessary foundation for collaborative business processes. In addition, semantically 
enriched product information may enhance the quality and effectiveness of business 
transactions and can be used to support production planning and management. These 
features can be offered by ontology, and the potential benefits of ontology on product 
information have been introduced by researchers in recent years [8,23,37,17,18]. 
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Product ontology requires specifying a conceptualization of product information in 
terms of classes, properties, relationships, and constraints. Although there has been a 
vast amount of research in ontology, there are still gaps to be filled in actual 
deployment of the technology/concept in a real-life commercial environment. These 
gaps are especially prevalent in certain domains such as product information 
management where mission critical applications need to be ‘operational’. We recently 
participated in a project to build an operational product ontology system for a 
government procurement service [19]. Herein, by ‘operational’ we mean that product 
ontology should run in a large scale database with gigabytes or terabytes size and that 
applications built on the product ontology database should benefit a proper degree of 
inference functionalities. This means that we may compensate some degree of 
ontological beauties such as full-fledged reasoning with the availability, robustness, 
and performance that operational product ontology should provide. 

Two major issues for building an operational ontology not only limited to product 
but in other domains may include 1) how to model and implement operational 
ontology and 2) to build an application that runs in large scale and benefits the 
underlying ontology model. One of the most important and popular applications 
related to product information system is product searching. Product searching that 
exploits the ontological benefits may provide users with more a precise and relevant 
set of products than is possible with conventional IR-based searching. Obviously, 
searching techniques over product ontology should be different from the techniques of 
processing queries over conventional document or relational databases, and should 
take into account of the features of the underlying ontological model. 

In this paper, we present these two issues; product ontology modeling and 
searching techniques. The rest of this paper is structured as follows: Section 2 
describes related work and offers a brief introduction of how to build an operational 
product ontology system. In Sections 3 and 4, we present our modeling methodology 
for building an operational product ontology database and explain how our model 
corresponds to OWL representation. In Section 5 we discuss how to design and 
develop a searching technique over a product ontology model. Conclusions are drawn 
in Section 6. 

2   Related Work 

The Web has been extended in a way that information is incorporated into well-
defined semantics, better enabling computers and people to work in cooperation. 
Ontology plays an essential role in realizing the Semantic Web. It is concerned with 
the taxonomic hierarchies of classes and class definitions, relationships between 
classes, and knowledge about beings and their world. XML based markup languages 
such as DAML+OIL [11] and OWL [31] have been developed to represent ontology 
in the Web, and also have given influence to the Web applications such as e-
commerce systems. 

Product information has the taxonomic hierarchies and consists of multiple 
attributes. In addition, exchanging product information among business partners 
requires it to have well-defined semantics. That makes product information an 
adequate domain within e-commerce where ontology can play a vital role. In [8] the 
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authors list the difficulties of building, maintaining, and integrating product 
information, and propose that an ontological approach may be the answer. In [25] the 
authors propose to use cross industry standard classifications such as UNSPSC1 and 
eCl@ss2 as the upper ontology and industry specific classifications as lower ontology. 
An upper ontology is about concepts that are generic, abstract and, therefore, are 
general enough to address (at a high level) a broad range of domain areas, while lower 
ontology contains domain-specific knowledge [35]. An effort to introduce the ISO 
standard for product library is presented in [22]. All of these authors’ work, however, 
focuses mainly on classification standards as the shape of ontology for product 
information. Classification hierarchies are an essential part of product information 
semantics but make up only one piece of the picture. 

The importance of attributes in product information management is well-
introduced in [12,17]. In [12], the quality of product classification standards is 
evaluated by a number of factors including the quality of their attribute lists. In [17], 
the authors point out that a classification hierarchy is a representation of just one of 
many views over the set of products, and that a product’s identity and property are not 
decided only by how the product is classified. Product database design issues and 
guidelines are presented, where the focus is on properties (attributes) rather than on 
classification hierarchies. 

For any semantic modeling to be suitable for its application domain, it is crucial to 
investigate what semantic concepts and relationships are desirable for the domain and 
to capture them in a model. More specifically, as mentioned in [8], ontological 
modeling of e-Catalog requires specifying a conceptualization of e-Catalog in terms 
of classes, properties, relationships and constraints. Concepts presented in this paper 
are gleaned through a real project that we participated in [19], and their formal 
representations are presented using description logics [21]. In this paper, we 
summarized the types of semantic relationships that need to be identified during 
product ontology modeling. Furthermore, we showed how to use OWL to formalize 
the semantics of product data stored in a relational database [20]. 

[18] is a recent work that points out that building an OWL knowledgebase is not 
pragmatically adequate for a large-scale ontology. Instead the authors promote a 
relational database approach in which reasoning is supported by storing facts in tables 
and representing rules in SQL triggers. However, their work is different from ours in 
that they focus on providing a programmatic framework rather than on modeling 
related issues. E-procurement is one of the most suitable domains that can benefit 
from well-defined product information. The process of registering or searching for a 
product, adding a new supplier, or placing a purchase order requires accurate product 
information. We have built an ontology system3 for the Public Procurement Services 
of Korea, which is responsible for procurement for government and public agencies. 
The purpose of the system is to provide a universal ontology repository with browsing 
and searching capabilities in order to facilitate e-catalog sharing and interoperability 
[19]. 

                                                           
1  http://www.unspsc.org 
2  http://www.eclass-online.com 
3  The system is called KOCIS (Korea Ontology-based e-Catalog Information System), and 

accessible online at http://www.g2b.go.kr:8100/index.jsp 
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The system consists of product ontology database and two subsystems; the 
ontology construction & maintenance system and the ontology search system (Figure 
1). The ontology database model uses a meta-modeling approach, and includes the 
key semantic concepts including products, classification schemes, attribute 
requirement for each product, and unit of measures and their relationships to each 
other. We also organized and built a number of TDs (technical dictionary) to view the 
contents of the database. Further discussion on this is given in Section 3. 

Ontology construction and maintenance subsystem populates the product ontology 
database from an existing product database by transforming (preprocessor) and bulk-
loading (loader) the data periodically (scheduler). It also manages updates 
(synchronizer and logging module) while maintaining the consistency of the ontology 
database (consistency checker). The ontology search subsystem helps users navigate 
through or search the domain knowledge stored in the ontology database. Further 
information on how to develop our ontological product searching is given in Section 5. 

 

Fig. 1. The product ontology system at KOCIS [19] 

3   Modeling for Operational Product Ontology 

3.1   Modeling Methodology 

Our modeling goal is not only to design a ‘conceptual’ product ontology model but 
also to implement it as an operational ontology database. One way to achieve this goal 
may be through using an ontology language such as OWL and building an OWL 
knowledgebase that represents the intentional and extensional concepts and 
relationships for the product ontology. This approach, mainly favored by the research 
community with extensive computer science backgrounds, may be beneficial for 
integrating the domain ontology model with an inference engine for the language. 
However, it is technically too complicated to represent and comprehend the domain 
for a domain expert who has little knowledge in the formal language. More 
importantly, from a practical point of view, there is no publicly known robust engine 
to manage a large knowledgebase with practical performance. For example, our 
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product ontology database contains over five hundred thousands products and more 
than nine hundred thousands concepts including product classes, attributes and 
UOMs. Concepts are linked by the semantic relationships, and the total number of the 
semantic links is more than twenty-one million [19], not to mention that the size of 
the database keeps growing. In addition, we only needed a rather limited-set of 
reasoning capabilities such as transitivity and inverse. Naturally, the general purpose 
reasoning capability of an OWL engine was considered as over-kill. Consequently, 
we may regard this approach to be of little pragmatic value if used for an operational 
product ontology. 

From a purely pragmatic point of view, an alternative way is to build a product 
ontology database on commercially operational database systems, i.e., more 
specifically object-relational DBMSs. It takes advantage of existing standards for data 
management and the DBMS features that have been optimized over the years in terms 
of robustness, scalability, or performance. Although it can support a limited set of 
reasoning by the object-relational model itself and a featured set of reasoning should 
be implemented within database applications, it is a sure way to make an ontology 
database operational. Table 1 shows the key differences between these two 
comparative methodologies. 

Table 1.  Model implementation methodology 

OWL-based knowledgebase 
approach Relational database approach 

Theoretical 
background 

OWL, DAML+OIL, Topic 
Maps, Description Logics, 
FOL, … 

EER, Table, SQL, Relational 
Algebra & Calculus, … 

Pragmatism Theoretical yet ideal Operational and practical 

Ontology 
representation

Rich for various semantic 
constraints

Rather limited for complicated 
semantic constraints 

Ontological 
Reasoning or
inference 

Supported by the OWL-
reasoning engine. Yet 
reasoning complexity may be 
high. 

Limited. And featured reasoning 
capabilities should be coded 
within applications. 

Commercial 
level 

Publicly no engine is available 
to support a large 
knowledgebase. 

Many DBMSs are commercially 
available.

 

In order to moderate between those two extreme methodologies, we need an 
adaptive approach which is practical in scalability and yet open for future technology. 
We claim that one way to achieve this is through building a product ontology 
database on top of an operational database system and yet providing an exporting 
mechanism from the database to an OWL knowledgebase. In other words, each 
modeling construct in an object-relational database can be translated into the 
corresponding OWL representation. Then a set of translated representation may form 
an OWL knowledgebase, and the ontological reasoning could be exploited by a 
‘robust’ OWL engine should the engine indeed exist. 
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In fact, within our project we developed a mechanism to translate relational tables 
representing concepts such as products, classification schemes, attributes and UOMs 
(unit of measure), and their relationships into OWL representations. In the following 
subsections we discuss in more detail how we developed an ontological product 
model and implement it on an object-relational database. In Section 4 we overview 
the correspondence between our model and the OWL representation. 

3.2   Meta Modeling for Product Ontology 

Ontological modeling is an inherent process for building an ontology application 
regardless of the application domain. After the domain analysis, one needs to first 
conceive the key concepts and their relationships which may best portray the domain. 
In our product ontology, we regard products, classification scheme, attributes and 
UOMs as the key concepts. The products, the most important concept, are for the 
goods or services. The classification scheme and the attributes are used for the 
classifications and descriptions of products respectively. The UOM is associated with 
the attributes. 

 

Fig. 2.  a) Concepts and relationships in meta-level  b) Taxonomy of semantic relationships 

Figure 2-a) illustrates our view for product ontology using the meta-model 
approach. The meta-modeling approach enables a product ontology model to be more 
extensible and flexible. Our product model follows the basic meta-model which 
employs three modeling-levels: M0 meta-class level, M1 class level and M2 instance 
level. Within M0 level, which describes high level conceptual product ontology, we 
have the aforementioned key concepts as meta-classes. Key concepts are products, 
classification schemes, attributes and UOMs in our model, and they are represented 
by M_Products, M_ClassificationSchemes, M_Attributes and M_UOMs, 
respectively. As illustrated in Figure 2, meta-classes may have relationships (meta-
relationships) with each other. 

Various types of semantic relationships have been researched for a long time in 
multidiscipline areas such as cognitive science, logics and databases. A classification 
scheme by [36] presents one of the various viewpoints of classifying the semantic 
relationships. Based on both their work and our field experience [19], we created a 
taxonomy of semantic relationships for product information domain as in Figure 2-b), 
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in which top-level relationships include the general domain relationships, e-Catalog 
domain specific relationships and user-defined relationships. The relationships for 
general domain include inclusion, attribution, and synonym. As in [34, 36], they are 
semantically generic to various domains and should be considered as meaningful 
semantic relationships for the e-Catalog domain as well. 

The inclusion relationship describes cases in which an entity type contains other 
entity types, and it can be classified into the class inclusion or meronymic inclusion. 
The class inclusion represents the standard subtype/supertype relationship. The 
meronymic inclusion between C and D represents a part-whole relationship, i.e., C is 
a part of D (D is the whole of C), or simply C has D. For example, HDD and CPU are 
the parts of computer just as a beef-stew has beef, garlic, and onion as its ingredients. 
There are different semantic interpretations of this part-whole relationship. Similar to 
[36] we found the part-whole relationships to include component-of, substance-of, 
member-of, portion-of, and feature-of relationships. The attribution describes 
situation where an entity type describes properties or characteristics of other entity 
types. Finally, the synonym relationship describes an entity type that contains similar 
semantics to other entity types. For example, price and weight are attributes of 
Laptop; and Laptop is a synonym of Notebook. 

The next set of semantic relationships is particularly conceivable for the e-Catalog 
domain. It includes substitute, complement, purchase-set, and mapped-to relationships. 
For examples, a pencil is a substitute of a ballpoint pen, and a LCD monitor is a 
substitute of a CRT monitor in that each may act as a replacement of the other. The 
complement relationship means that one may be added to another in order to complete 
a thing or extend the whole. For example, an antiglare filter is complement to a 
monitor. Similar but not identical to these, we may also see that such products as a 
monitor, an OS, and a mouse are also purchased with a personal computer. This is 
represented as a purchase-set, i.e., a personal computer has a purchase-set relationship 
with a monitor, an OS, and a mouse. 

While substitute, complement, or purchase-set are relationships among product 
classes, the mapped-to relationship assigns a product into a specific class code within 
a classification scheme, or maps a class code of a classification scheme into the codes 
of different classification schemes. For example, a LCD panel product is mapped to 
(belongs to) 43172410 commodity class under a certain standard classification 
scheme. A product class can then be defined or classified differently depending on 
classification schemes. For example, the product personal computer is mapped to 
43171803 in UNSPSC classification system, and 8471-10 or 8471-41 in HS code 
system. 

Note that in Figure 2, meta-class and meta-relationships are identified by the prefix 
‘M_’ to indicate that they are meta-concepts. M1 class level contains a snapshot or 
instance of the product ontology model in M0. That is, it illustrates a class schema of 
a product ontology database. The conceptual class schema may be then translated into 
its logical schema managed by an operational DBMS. The logical schema in our case 
is a set of object-relational tables and views. Figure 3 illustrates a part of the class 
schema of our product ontology database whereas M2 instance level refers to the 
physical ontology data managed by the system. For example, notebook and LCD 
panel products in M1 level are instances of products meta-class in M0 level, and there 
is a component relationship between them, i.e., a notebook contains a LCD panel and 
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a LCD panel is a component of a notebook. Note that contains and component-of are 
in an inverse relationship with one another and are the instance relationships of 
component meta-relationships existing between products meta-classes. A notebook 
has attributes (described as propertyOf relationship) such as manufacturer, price, 
weight, and so on. Therefore, an individual notebook product, IBMX306 should 
appear in M2 level. Readers who are interested in the details of our product ontology 
model including the types of semantic relationships are referred to [21]. 

 

Fig. 3. Product ontology model in conceptual level and an exemplary instance product 

The meta-modeling is a modeling methodology which can be generally applied to 
other domains as well. It should be pointed out that conceptualizing the concepts and 
relationships within a given domain is subjective and susceptible to various enterprise 
environments. Thus, the principle at the bottom of ontology modeling is that a model 
should be flexible enough to adapt to those variations, which is the greatest benefit 
that the meta-modeling approach may provide [2,29]. For any ontological modeling to 
be suitable in an application domain, it is crucial to investigate what semantic 
concepts and relationships are desirable for the domain and to capture them in a 
model. The main procedure of our meta-modeling consists of conceiving the key 
meta-concepts and relationships (M0), identifying the instances (individual concepts) 
of the meta-concepts (M1), and materializing the individuals. For example, in medical 
(in contexts of anatomy and pathology) ontology, the examples of key meta-concepts 
and relationships may include Structures (organ structures), Diseases, or Medicine 
(meta-concepts), and is-a, part-of, has-location, or effective (meta-relationships), 
respectively [32]. Then, the examples of individual concepts and relationships (M1) 
may include the following (in the above order): Appendicitis is a enteritis; appendix is 
an anatomical-part-of the colon; enteritis presents its symptoms in the intestines; and 
electrolytes may be used to treat enteritis. Individual electrolytes products (made by 
various medicine manufacturers) can be purchased at pharmacies. Other types of 
concepts and relationships can be appended without changing the framework. 
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3.3   Model Implementation and Technical Dictionary 

We create an object-relational product ontology database consisting of more than 
forty base tables to reflect the aforementioned conceptual and class schemas. One 
novel feature that our ontology database provides is that it organizes and displays the 
product information in the form of technical dictionaries. Technical dictionaries, 
(TDs), are used frequently in the e-Catalog domain to describe the products and their 
properties. Well-known TDs include eOTD, GDD, and RNTD of ECCMA, 
EAN/UCC, and RosettaNet, respectively [7,9,28]. Compared to these TDs, our TD 
holds a far richer set of information that is required for machines to operate on 
products intelligently; such as the product’s attributes and its relationship to other 
products. 

We have constructed a number of technical dictionaries, in a way along which we 
can reflect the core concepts and relationships explained in the conceptual product 
ontology model. The contents of each TD are extracted and organized from the 
different sets of underlying ontology base tables. As an example of a TD, Table 2 
shows a part of the classification technical dictionary. Within the dictionary, we have 
a product classification for personal computers. Under this specific classification 
scheme (g2b), it has a class code of 43171825, and it is also called as PC, desktop 
computer, or workstation (synonym field). In general, a product class may be defined 
or classified differently depending on classification schemes. We can find such 
information in the code mappings. For example, personal computers are mapped to 
43171803 in UNSPSC classification system, and 8471-10 or 8471-41 in HS code 
system. It has component (contains) relationships with CPU, HDD, and RAM, and 
substitute relationships with notebook computers. We may also see that such products 
as a monitor, an OS, and a mouse are also purchased with a personal computer. 

Note that each item within the same TD might have different columns to the ones 
that other items have, in that they can have different classification code mappings and 
relationships in actual contexts. For example, while the item personal computer has 
 

Table 2. An example of a technical dictionary: g2b classification TD 

class 
name 

G2B 
code 

description synonyms code mappings relationships 
e
t
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UNSP
SC 

HS 
GUN
GB 

compon
ent 

substitute 
purchas

e-set 
person
al 
compu
ters 

43171
825 

A computer 
built for use 
by an 
individual 
… 

PC,desktop 
computers, 
workstations 43171

803 
8471-
10, 
8471-

70103
00 
 

CPU, 
HDD, 
RAM,

notebook 
computers 

monitor
s, OS, 
mouse,

…

UNSPSC GUNGB
comple
ment 

substitute 
purchas

e-set 
LCD 
monito
rs 

43172
410 

A low-
power flat-
panel 
display 
used for … 

LCD, liquid 
crystal 
displays, flat 
panel 
displays 

43172402,
4317240, 
431724 

7025366, 
7025302 

arm 
stand, 
antiGlar
e filter 

CRT 
monitors 
 

personal 
compute
rs 
 

…

… … … … … … …
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three columns of code mappings for UNSPSC, HS, and GUNGB, another item such 
as a LCD monitor has just two columns of code mappings for UNSPSC and GUNGB. 
This means that in the actual product ontology database the item LCD monitor does 
not have any mapping relationship to HS. Similarly, the types of relationships that 
personal computers and LCD monitors have are different; personal computers have 
component but no complements while LCD monitors have complement but no 
component products. 

4   Product Ontology Model: OWL Perspectives 

4.1   Comprehensive Correspondence 

A feature of our modeling approach is that we may represent the product ontology 
model in a standard ontology language. In this section, we illustrate how the model 
can be represented in OWL [31,20,10]. An OWL knowledge representation for 
specific domain may be the best means to utilize the techniques from so-called 
ontology-engineering [14,32]. For instances, it is beneficial for making a 
knowledgebase loosely-coupled from the application codes, enabling it to develop 
knowledge bases independent and interoperable from each other, and automating 
reasoning facility by OWL inference engines [26]. Recently, in the product ontology 
domain, there have been efforts by researchers to transform or publish the domain 
representation into OWL versions as well. Two most important related works are 
[13,21]. 

In [13], the authors focus on OWL derivation for industry standard taxonomy, such 
as UNSPSC and eCl@ss. They classify concepts into three parts; generic concept, 
annotation concept, and taxonomy concept for capturing the original semantics of 
existing standards taxonomy. In our preliminary work [21], we introduced a modeling 
framework which formally represents product ontology in DL(description logics). 
OWL and DL share a theoretical background. Furthermore, a model in DL may be 
translated into OWL representation. This requires consideration of the employed 
OWL language in terms of expressiveness and complexity along with its practical 
usage in the product information domain. 

Figure 4 illustrates a basic mapping from our product meta-model (Figure 2-a) to 
the OWL representation. Note that we rename Attribution(‘PropertyOf’) relationship 
between Products and Attributes with ‘hasAttribute’ to avoid confusion with the 
property expression in OWL. 

Basically, concepts can be represented by owl:Class, and relationships by 
owl:ObjectProperty or owl:DatatypeProperty, in general. The class inclusion (isa) 
can be represented by ‘rdfs:SubClassOf’. Datatype property is used for relationships 
which exist between a class instance and a data value, while object property is used 
for relationships between class instances. An in and outgoing edge of arcs illustrates 
the property domain and the range of a property respectively. Note that in OWL, the 
domain and the range of a property limit the individuals to which the property can be 
applied and the property it may have as its values respectively. Relationships may 
have additional property restrictions (owl:Restrictions) or property characteristics 
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Fig. 4. Basic OWL correspondence in meta-level 

 

Fig. 5. An exemplary OWL representation for computer-related products 
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(owl:TransitiveProperty, owl:SymmetricProperty, owl:inverseOf, or owl:FunctionalProp-
erty) to convey the proper semantics of the relationship. This can be seen in Figure 5 which 
is essentially a more detailed illustration of Figure 4. 

In Figure 5, desktop computers are members of 8471-10 and of 43171803 
commodities in HS and UNSPSC classification systems respectively. The member 
relationship may be represented by the owl:ObjectProperty::member object property 
with rdfs:domain::ClassificationScheme and rdfs:range::Product restrictions. The 
object properties are also used in other places such as purchaseSET between LCD 
Monitor and Desktop Computer, and has_Size between LCD Monitor products and 
Displaysize attributes. ClassID is an attribute of LCD Monitors and has a string data 
type value of ‘25231036’. This can be represented by owl:DatatypeProperty with a 
restriction of rdfs:range::STRING. 

Consider that desktop computers and LCD Monitors may be purchased together. 
This can be represented using owl:ObjectProperty::purchaseSET with an additional 
restriction with owl:SymmetricProperty to denote the symmetric property of the 
purchaseSET property. Additionally, if the domain of purchaseSET is limited to 
Desktop computers, then the range should be limited by adding the 
owl:someValuesFrom restriction. 

The individual products are represented by using rdf:type, that ties an individual to 
a class to which it belongs. For example, LCDx1751QD and SAMSUNG 
MagicStation are the individuals of LCD Monitors and Desktop computers, 
respectively, and can be represented by <LCDMonitors rdf:ID=”LCDx1751QD”> 
and <DesktopComputer rdf:ID =”SAMSUNGMgicStation”>. 

LCD Monitors products have DisplaySize as an attribute. This is represented by 
owl:ObjectPropertyOf::hasDisplaySize of which domain and range are restricted to 
LCD Monitors and DisplaySize. In attribute classes, DisplaySize is a sub type of Size 
and also synonym for MonitorSize. This may be represented using rdfs:SubClassOf 
and owl:EquivalentClass respectively. 

Finally, DisplaySize attribute associated with the Length UOM and the instances of 
Length UOMS include ‘inch’ and ‘cm’. Similar to the previous examples, these may 
be represented using owl:ObjectPropertyOf::useUOM and rdf:type. Note that ‘inch’ 
and ‘cm’ UOMs may be converted, i.e., 1inch = 2.54cm. In our project, each equation 
is represented as a convertedTo relationship and maintained in a relational table. 

4.2   OWL Property Restrictions for Semantic Relationships 

As mentioned in the previous section, although relationships may be corresponded to 
owl:ObjectProperty, more restrictions should be selectively added to each object 
property to convey precise semantics. Those restrictions include owl:Transitive-
Property, owl:SymmetricProperty, owl:inverseOf, and owl:FunctionalProperty, and 
owl:someValuesFrom and owl:allValuesFrom to further constrain the range of a 
property in specific contexts. 

As an example, let us consider that a DC spindle motor is a component (or part) of 
HDD(hard disk) product which is also a component of computer products (Figure 6). 
The component relationship, in general, is not always transitive in that it usually 
contains both aggregational and functional semantics; being a functional part of its 
whole does not necessarily mean that the part is functional for another object which is 
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composed of the whole [34]. However in practice, people often do not clarify the 
precise semantics of the component relationship that they use. For example, a query to 
find all hardware classes which contain DC Spindle as its “component” is not clear 
whether it is meant to search for any hardware having DC Spindle as its direct part or 
as its both direct and indirect parts (being contained within another product). In order 
to handle an indirect part-whole relationship, we need the transitive property, i.e., x·y 
& y·z� x·z. This can be represented in OWL using owl:TransitiveProperty . If HDD 
is a component(part) of Computer, then Computer is the composed(whole) of HDD. 
This may be represented using owl:inverseOf. In addition, the value restriction 
owl:someValuesFrom should be applied to the component property since Computers 
have not only HDD but also other parts such as CPU, a graphic card, RAM and etc.. 

 

Fig. 6. Restrictions on component relationships 

 

Fig. 7. Restrictions on supplement relationships 
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Table 3.  OWL correspondence to semantic relationships 

General domain relationships 
Semantic 

relationships Examples in OWL Semantic 
relationships Examples in OWL 

Class
Inclusion

Meronymic 
Inclusion

Restriction 
for Semantics 

Restriction 
for Semantics 

SubClass Of

<owl:Class
rdf:ID=”DeskTopComputers”> 
<rdfs:subClassOf 
rdf:resource=”#Computers”/> 
<owl:disjointWith
rdf:resource=”#NotebookCompu
ters” /> </owl:Class>

Synonym 

equivalentClas
s

<owl:Class
rdf:ID=”PersonalComputer”> 
<equivalentClass
rdf:resource=”# PC 
“/></owl:Class>

Attribution 
Restriction 
for Semantics 
DatatypeP 
roperty 
Domain 
Range

<owl:DatatypeProperty 
rdf:ID=”ClassID”><rdfs:range 
rdf:resource=”XMLSchema#stri
ng”/>
<rdfs:domain><owl:Class 
rdf:about=”#Product” /> 
</rdfs:domain> 
</owl:DatatypeProperty> 

ObjectProperty 
InverseProperty
TransitivePrope
rty(optional) 

SomeValuesFro
m

<owl:Class rdf:ID=”HDD”> 
<rdfs:subClassOf>

<owl:Restriction> 
<owl:someValuesFrom 

rdf:resource=”#Computers”/> 
<owl:onProperty> 

<owl:ObjectProperty 
rdf:ID=”component”/> 

</owl:onProperty> 
</owl:Restriction></rdfs:subCl
assOf> </owl:Class> 
<owl:ObjectProperty 
rdf:about=”# 
component”><rdf:type 
rdf:resource="&owl;TransitivePropert
y”/> 
<owl:inverseOf><owl:Object
Property rdf:ID=”compose”/> 
</owl:inverseOf> 

</owl:ObjectProperty>

e-Catalog specific relationships 
Supplement Substitute

Restriction 
 For 
Semantics 

Restriction 
for Semantics 

SymmetricProp
erty
TransitiveProp
erty

AllValuesFrom

<owl:Class
rdf:ID=”LCDmonitors”> 
<rdfs:subClassOf>
 <owl:Restriction> 
  <owl:allValuesFrom

rdf:resource=”#CRTmonitors”/>
  <owl:onProperty> 
  <owl:SymmetricProperty 

rdf:ID=”substitute”/>
  </owl:onProperty> 

</owl:Restriction> 
</rdfs:subClassOf></owl:Class>
<owl:ObjectProperty 
rdf:about=”#substitute”> 

<rdf:type 
rdf:resource="&owl;TransitiveProperty
”/></owl:ObjectProperty> 

FunctionalPrope
rty (optional) 

AllValuesFrom

<owl:Class rdf:ID=”Toner”> 
<rdfs:subClassOf><owl:Restri

ction>
<owl:onProperty> 
<owl:FunctionalProperty 

rdf:ID=”supplement”/> 
</owl:onProperty> 

<owl:allValuesFrom> 
<owl:Class

rdf:ID=”LaserPrinter”/> 
</owl:allValuesFrom> 

</owl:Restriction> 
</rdfs:subClassOf> 
</owl:Class>
<owl:FunctionalProperty 

rdf:about=”#supplement”/> 

PurchaseSet MappedTo
Restriction 
for Semantics 

Restriction 
for Semantics 

SymmetricProp
erty

SomeValuesFr
om 

<owl:Class rdf:ID="Computer">
 <rdfs:subClassOf> 

<owl:Restriction>        
<owl:onProperty> 

<owl:SymmetricProperty 
rdf:ID="purchaseSet"> 
  </owl:onProperty> 
  <owl:someValuesFrom> 
   <owl:Class 

rdf:ID="Monitors"/>
  </owl:someValuesFrom> 
  </owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class>

SymmetricPrope
rty 

allValuesFrom

<owl:Class rdf:ID=” HS 8471-
10”>

<rdfs:subClassOf> 
<owl:Restriction> 
<owl:allValuesFrom> 

<owl:Class
rdf:ID=”UNSPSC43172402”/>
</owl:allValuesFrom> 
<owl:onProperty> 
<owl:SymmetricProperty 

rdf:ID=”MappedTO”/> 
</owl:onProperty> 
</owl:Restriction> 
</rdfs:subClassOf> 

</owl:Class>  
 

Let us consider that any individual antiglare filter product may serve as a 
supplement to any monitor product while only a specific type of toner product may 
serve as a laser printer. For example, TonerHP-2420 works with Laserjet2420, but 
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other toners may work with it as well (Figure 7). In this case, owl:Objectproperty: 
supplement with owl:allValuesFrom may be enough to represent the supplement 
relationship between Antiglare filter and Monitor product classes. Whereas, we 
should add the owl:FuctionalProperty restriction to the supplement relationship 
between TonerHP-2420 and Laserjet2420. 

A substitute relationship means that one may act as a replacement for the other. For 
example, a pencil is a substitute for a ballpoint pen. A substitute relationship might 
contain symmetric property, i.e., x substitute y � y substitute, which is represented in 
OWL as owl:ObjectProperty::substitute with the restriction of owl:SymmerticProperty. 

Due to space limitations, we do not provide more details in translation scheme and 
associated property restrictions for each semantic relationship. Rather, we summarize 
them in Table 3. Readers who are interested in more details are referred to [20]. 

5   Building Applications on Product Ontology 

5.1   Ontology-Based Searching 

A product ontology may contain a large number of concepts and relationships. For 
naive users to search and navigate the ontology efficiently, good search and 
visualization functionalities should be provided. In practice, we may not expect 
ordinary users to have sufficient knowledge of the underlying schema to be able to 
compose their queries precisely in query languages such as OWL-QL or SQL. We 
contemplate the problem of ranking keyword search results over product ontology 
databases. First, we summarize some of the related works. 

Traditionally ranking keyword search results have been extensively studied in the 
context of text. Ever since the big bang of the Internet, it has received more attention 
in other contexts such as web and xml documents. In the IR (information retrieval) 
research community, text ranking is typically done using keywords and its occurrence 
frequencies such as tf and idf values [30]. In the web environment, PageRank [5] and 
HITS [16] are the most well-known ranking algorithms. Both algorithms compute the 
authority of a document by considering hyperlinks. Documents with higher authority 
are positioned in higher ranks as they are regarded as globally important ones. The 
database research community has also paid attention to the keyword search problem. 
For example, [4] presents ObjectRank, which may be regarded as a modification of 
PageRank for relational databases. All the above works do not exploit ontology in 
their searching algorithms, which is what distinguishes our work. In [33] the authors 
propose a context-sensitive searching algorithm to exploit the ontology concept. 
However, they use ontology only for refining the meaning of search terms while the 
underlying data is not ontologically modeled but stored in plain HTML or XML 
format. An abundance of semantic relationships and their characteristics in the 
context of the Semantic Web are well documented in [1]. In that paper, the authors 
blended semantics and information-theoretic techniques for their general search 
model, in which users can vary their search modes to affect the ordering of results 
depending on whether they need conventional search or investigative search. Other 
researchers [27, 24] use a similar approach that combines the weight of relationships 
into their ranking functions. Their algorithms do not consider cases in which a search 
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term may occur in a relationship name but only deal with the occurrence frequencies 
of relationships associated with each concept. 

Processing keyword search queries over product ontology databases are different 
from processing queries over documents, web, or relational databases. First, searching 
product ontology should consider relationships between concepts while IR-based 
searching considers only the term occurrences in product data. Obviously, the ranking 
function should be altered to properly reflect the product ontology while utilizing IR-
style information such as keyword proximity [30] as well. Considering relationships 
in a ranking function helps to understand the meaning of concepts and improve the 
recall by retrieving more related concepts. Furthermore, users in the product ontology 
domain tend to have more definite intention on issuing queries. They are more likely 
to search for products or product classes, which are represented by nodes in our 
product ontology graph (see the following subsection). In the semantic web or 
relational databases, instead, the target of the keyword search is usually a subgraph, 
rather than nodes. Note that a subgraph represents a relationship (or edge) between 
concepts or records in the semantic web or relational database respectively. 

5.2   Product Searching and Product Ontology Graph 

Our searching algorithm employs a graph structure, called a product ontology graph, 
to represent a snapshot of the underlying product ontology. An example of a product 
ontology graph appears in Figure 8. There are two types of nodes in a product 
ontology graph. The first type is a schematic node. The schematic node, represented 
by a rectangle in the graph, denotes a concept in M1 class-level, such as product class, 
classification scheme, UOM, and attribute. The second type of node is an instance 
node. The instance node, represented by an ellipse in the graph, denotes an instance in 
M2 instance level. Accordingly, every instance node has an associated schematic 
node. For example, an instance node “IBM S40”and “WD 2120” denote individual 
products which are associated with “Desktop computers” and “HDD” product class 
respectively. Note the schematic nodes are annotated by the corresponding concepts 
in M0 meta-level: e.g. Computers are annotated by <<Products>>.  
 
Example 1. Given a query to find a UNSPSC code for products “IBM P4 3.0GHz”, 
the system should return 48171803 (desktop computers) or 48171801 (notebook 
computers), or both. Conventional cumulative ranking functions such as PageRank[5] 
would rank desktop computers higher than notebook computers simply because they 
would determine that the global importance of desktop computers is greater than that 
of notebook computers, i.e., the number of incoming edges for desktop computers is 
greater. However, from a probabilistic point of view, the keywords “IBM P4 3.0GHz” 
are likely more relevant for notebook computers since every product in notebook 
computers is “IBM P4 3.0GHz” whereas only half of the products in desktop 
computers are “IBM P4 3.0GHz”. Note that most of the probabilistic classification 
algorithm such as Naïve Bayesian Classifier would return notebook computers as a 
result. (See Appendix for an explanation.) 

 

Example 2. Keywords used in a query may be values, attribute names, category 
names, and even relationship names etc., whereas in a typical keyword search they are 
confined to attribute values only. As an example, in a query “IBM computer with 



258 T. Lee  et al. 

components of P4 CPU”, the keywords “computer”, “component”, and “CPU” are 
names of product class, relationship, and attribute class respectively. For this query, 
both IBM S40 and IBM G41 may be retrieved as results, since desktop computers and 
notebook computers are sub-classes of the computer class, and both are made by IBM 
and contain P4 CPUs.  
 

Example 3. Given a query to find an “IBM desktop computer with SG HDD”, there is 
no individual product satisfying the keywords in the desktop computers’ class. Since a 
substitute relationship between desktop and notebook computers was found in the 
product ontology graph, an IBM G41 notebook would be returned as a result, more 
precisely as a substituting product.  

 

Fig. 8. An example of product ontology graph 

As we have shown in the previous examples, there are particular features to notice 
in product ontology searching. First, the ranking function should consider not only the 
concepts that contain the keywords but also other context information such as the 
number of products in the same class and the number of edges (in Example 1). We 
use a well-known probabilistic model to accurately measure the relevance of query 
results, while others either use a simple additive function to compute the ranks or 
never even tried to apply the probabilistic model to product ontology. 

Second, the ranking function should consider various kinds of relationships. There 
exist a large number of relationships which include member, instance, attribute and 
other relationships between products. As we saw in Example 2, keywords in the query 
can be attribute or relationship names. If a name of a relationship existing between 
products is matched with the given keyword, then it would make the incident products 
relevant with the query. We allow the ranking function to use a different score 
propagation method for each relationship in order to consider the types and names of 
relationships. 

Third, a relationship, such as substitute in Example 3, could be used to offer 
relevant products to users. Even though the name of the relationship is not mentioned 
in the query, scores of the relevant nodes are propagated to adjacent nodes in the 
graph. In our algorithm, the propagated score decreases as the degree of propagation 
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increases. In the following subsection we overview our ranking algorithm which 
considers the features mentioned above. 

Our ranking model is based on the Bayesian Belief Network (BBN) [3]. In our 
model, every concept and relationship in ontology represents a variable and a 
conditional dependence on the BBN. As we have seen in previous examples, we 
assume that the scores of concepts are determined not only by the concepts but also 
by their associated relationships. Specifically, the scores of concepts are propagated to 
other concepts through the relationships as PageRank [5] does. But our propagation 
method is different from PageRank in that the scores of nodes are not equally 
distributed. In our model, scores are propagated to adjacent nodes by multiplying a 
propagation ratio which is defined distinctly on each relationship type. 

As for an instance edge, we have the propagation ratio defined probabilistically. 
For example, the propagation ratio of an edge between an instance and a class can be 
defined as the probability of selecting the instance from the whole instances of the 
class. Then the propagation ratio of a relationship may be defined as the degree of 
belief on the relationship type and its value may be given by the administrator. Let us 
say that the substitute and synonym relationships have 1 while the part-whole 
relationship has 0.1 as their propagation ratios. That may rank products associated 
with the substitute or synonyms relationship higher compared to products associated 
with the part-whole relationships. In the meantime, if a relationship name contains the 
keywords used in query as in Example 2, the propagation ratio may be determined on 
the fly while processing the given query. See the Appendix for more details. 

 

Fig. 9. A product ontology subgraph from Fig 8 

Example 4. Consider a product ontology graph as in Figure 9 and a query for “IBM 
P4 3.0 computers.” We can otherwise assume that the scores of nodes containing 
given keywords are 1 and 0. Arranged according to the subscription above each node, 
the scores of nodes are <1, 1, 0, 1, 0, 1, 1, 0, 1>. Since the propagation ratio of the 
instance relationship between node 1 and node 4 (i.e. the probability of selecting node 
4 among instances of node 1) is 0.5, the score of node 4 is increased by 0.5 after the 
score propagation. The score of node 2 is increased by 1 after the score propagation 
from node 6 since the score propagation ratio of the relationship between node 2 and 
node 6 is 1. 
 
The idea of the score propagation may be found in previous works such as PageRank 
and spreading activation [6]. Our contribution is that we developed a framework in 
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which various types of relationships existing in product ontology are exploited for the 
score propagation. Furthermore, we are able to find not only instances (M2 level) but 
also classes (M1 level) in the product ontology graph. This is useful especially in 
product domain where users are interested in finding out not only individual products 
(instance) but also product classification (class), as shown in Example 1. Score 
propagation may be computationally expensive since the score of each node is 
propagated to every connected node in the ontology graph. In the KOCIS system, we 
limit the number of score propagations to 4 levels in depth, i.e., each node affects the 
nodes only reachable by equal to or less than 4 links (relationships).  

6   Conclusions 

Although there has been a vast amount of research in ontology, there are still gaps to 
be filled in the actual deployment of the technology in a commercial environment. 
There are numerous problems to overcome especially in those applications that 
require well-defined semantics in mission critical operations. Our work is based on 
the observation that the main challenges in building those applications is to maintain a 
balance between built-in functionality and domain/scenario-specific customization 
[17,15]. 

The main purpose of our paper was to present a modeling approach of a product 
ontology database which can be operational in practice. To achieve this; we identified 
the fundamental product semantics to describe product ontology. It included the 
definitions, properties, and relationships of the concepts and types of the semantic 
relationships that have to be identified in a product domain. Then we presented how 
the product ontology database can be modeled and implemented in a relational 
database so that it may be operational and also run applications on top. In addition, 
since exporting the database in OWL representation may be of benefit for several 
reasons, we showed how to formalize our model in OWL language. Our approach to 
make product ontology operational, as a whole rather than in the individual steps 
contained in the approach, has not been proposed or done before as far as we are 
aware. 

Ontological product searching techniques should be designed in order to benefit 
the features that the underlying ontological model provides. Our approach enables 
users to reference product ontology directly through simple keyword search interface, 
thus opening up the door for people with little knowledge of product ontology 
systems. Ranking is important in practice in that searching may result in numerous 
outputs. We have been developing a ranking algorithm based on our product ontology 
search model and the Bayesian belief network. Our ranking algorithm is intended to 
be intuitive and also feasible to run on reasonably large ontology databases. However, 
neither formal description nor the practical performance competency of the algorithm 
is yet provided but are in progress. 

The correctness verification of our product ontology database is another important 
subject that we continue to work on. It has been conducted in part either by providing 
various types of pre-processing modules and human experts to complement the 
quality of raw product data or by checking the consistency of OWL representation for 
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each modeling unit basis. In addition, we are seeking alternative ways to effectively 
improve the correctness of the entire database. 
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Appendix: Ranking by Probabilistic Similarity 
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Fig. 10. An example of Bayesian Belief Network 

For illustrating our searching and scoring methods, we require the fundamentals of 
Bayesian belief network. Figure 10 illustrates a simple Bayesian belief network 
model. In this model, there are nodes ki (1 i 4), each of which denote the ith index 
term. The user query q is modeled as a node and linked to the keywords node ki if the 
user query contains the ith index term. Nodes in product ontology graph are also 
modeled as nodes r1, d1, d2, which are pointed to by the keywords nodes if they 
contain the keywords. In the belief network model, nodes represent random variables, 
the arcs portray causal relationships between these variables, and the strengths of 
these causal influences are expressed by conditional probabilities. According to [3], 
P(dj|q) is adopted as the similarity of the concept dj with respect to q, which is 
computed as 

∈∀

≅
Kk

iiijj

i

kPkqPkdPqdP )()|()|()|( , where K is a set of all keywords    (1)  

The problem of equation (1) is that it does not consider a related concept, r1 in 
Figure 10, in ranking concept d1. Now we extend equation (1) to incorporate the 
related concepts in calculating the scores. Let R denotes a set of nodes related to node 
dj and containing the given keywords. Considering the score propagation from r to dj, 
we can compute )|( qdP j

 as the following: 

∈∀ ∈∀
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In equation (2), the score of dj given query q is determined by not only P(dj|ki) – as 
is in equation (1) - but also P(dj|r) and P(r|ki). By P(dj|r) and P(r|ki), we denote the 
causal relationships from r to dj given keyword ki. Specifically, the score of r, P(r|ki), 
is propagated to dj by multiplying a propagation ratio P(dj|r) and added to its original 
score P(dj|ki). 

To complete the belief network we need to specify the conditional probabilities, 
P(dj|ki), P(r|ki), P(q|ki) and P(dj|r). Distinct specifications of these probabilities allow 
the modeling of different ranking strategies. For example, P(dj|ki) can be estimated by 
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i
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n

n
, where nij and ni denote the number of occurrences of each keyword ki in dj and 

the number of occurrences of ki in the entire ontology graph, respectively. 
Alternatively, if we normalize the value by the size of data, |dj|, P(dj|ki) can be 

estimated as 
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||

|| , where D is the set of concepts in the ontology. P(r|ki) can be 

estimated as the same way as P(dj|ki) since both r and dj denote the concepts in the 
ontology graph. P(q|ki), on the other hand, can be estimated as idf value[3] of term ki 
since it denotes the importance of the term in the query.  

P(dj|r) in equation (2) represents the degree of belief on dj given r. Even though the 
exact value is not known at the time of ontology construction, it can be estimated by 
link analysis or can be determined by an administrator. For example, din, r/rout, where 
din,r is the number of incoming edges of d from r and rout is the number of outgoing 
edges from r, can be used as such an estimation. This is similar to the PageRank 
computation in that the amount of score propagation is proportional to the probability 
of selecting node d from rout related nodes. Note that we can also simulate Naïve 
Bayesian Classifier if we use din, r/din instead of din, r/rout, where din is the total number 
of incoming edges to d. In some cases, P(dj|r) can be predefined by the administrator 
depending on the relationship types. For example, we can set the value to 1 for 
instance relationship from the instance product to the product class and 0 for reverse 
direction in order to make the relevance of instance products not affected by the 
keywords of other instances.  

 
  
NaïveAlgorithm(G, k, l, n) 

 G : ontology of n instances; 
 k : a set of keywords 
 l: maximal level of inferences 
 n : the number of returned results 
 
 For each node dj in G, compute P(dj|k); 
 Let S denote the vector : <P(d1|k), P(d2|k), …, P(dn|k)>; 
 Let E denote the n * n vector where each element ei,j is P(di|dj); 
 D=S; 

 For i = 1, 2, …, l 
  D= E�D;  
  S = S +D; 
 End 
 Return top-n elements from S 

Fig. 11. Probabilistic ranking algorithm : NaïveAlgorithm 
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Given the probabilistic similarity computation defined in equation (2), we need an 
algorithm that ranks the query results from the ontology databases. We provide a 
simple ranking algorithm, NaïveAlgorithm, which iteratively approximates the ranks 
of concepts.  

The NaïveAlgorithm is summarized in Figure 11. The algorithm is given as inputs 
the ontology database G, a set of keywords k, the number of returned results n, and 
the maximal level of inferences l. The maximal level of inferences l denotes the 
degree of inferences (following semantically relevant concepts) that can be applied to 
each node. Initially, it computes P(dj|k) for each node dj (1 j n) in the product 
ontology graph and makes a vector S : <P(d1|k), P(d2|k), …, P(dn|k)>. For ease of 
exposition, we assume P(dj|k) denotes the result of summing P(dj|ki) multiplied by 
P(q|ki) for every i as equation (1). Then we make a n×n matrix E where each element 
ei,j is P(di|dj) specified by the administrator or estimated by link analysis (as explained 
above). By adding E×D to S, we compute the propagated score of nodes denoted in 
equation (2) after following the semantically relevant concept node. We iterate E�D l 
times, where l is a user-defined threshold. NaiveAlgorithm is similar to PageRank and 
HITS in a sense that it iteratively computes instances’ score by vector calculation. 
[16] shows that S converges to an equilibrium state, an eigenvector of E, when the 
number of inferences increases arbitrarily. Analogously, our algorithm converges to 
an equilibrium state, but we limit the maximum number of iterations because it is 
shown that a relatively small value (about 20) of l is sufficient for the vectors to 
become stable in [16]. Then we can compute the score of every node in a timely 
manner.  

 
  
NaïveAlgorithm(G, k, l, n) 

 G : ontology of n instances; 
 k : a set of keywords 
 l: maximal level of inferences 
 n : the number of returned results 
 
 For each node di in G, compute P(di|k); 

 Let S denote the vector : <P(d1|k), P(d2|k), …, P(dn|k)>; 
 Let E denote the n * n vector where each element ei,j is P(di|dj); 
 D=S; 

 For i = 1, 2, …, l 
  D= E�D;  
  S = S +D; 
 End 
 Return top-n elements from S 

  

Fig. 12.  Probabilistic ranking algorithm : NaïveAlgorithm 

Example 5. Consider a product ontology graph in Figure 9. Given the query “IBM P4 
3.0” and l=2, let us show how the nodes are ranked by the NaïveAlgorithm algorithm. 

We set )|(
→
kdP i

 to 1 for d containing some keywords in k and to 0 otherwise. First 
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we sort the nodes according to the subscription above each node and make the score 

vector S. After calculating )|(
→
kdP i

for each node we get <0, 0, 0, 1, 0, 1, 1, 0, 1>. 

We assume that ),|( ij krdP
→

 is din, r/din for instance relationships and 1 for the other 

relationships. Then we make the matrix E. 
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By E�S, we get D, 
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, and S=
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. 

 
By E�D again we get D=[1/2 1 2/3 3/2 1/2 2 5/3 2/3 5/3]T and S=[1 2 4/3 7/2 1/2 4 

11/3 2/3 11/3] T. Overall ranking should be <6, 7, 9, 4, 2, 3, 1, 8, 5> represented by 
node numbers. The most relevant product is “IBM G41” represented by node 6. If our 
intention was to find product classes, the algorithm would return Notebook Computers 
as illustrated in Example 1. 
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